Лекция 7. Полупроводниковые приборы

Все твердые вещества по своим электрическим свойствам разделяют на проводники, полупроводники и диэлектрики.

Полупроводники занимают по электропроводности промежуточное положение между металлами (проводниками электрического тока) и диэлектриками. Удельное электрическое сопротивление проводников составляет ρ = 10-4 Ом ∙ см, полупроводников – ρ = 10-4 – 1010 Ом ∙ см, диэлектриков – ρ = 1010 Ом ∙ см и выше.

Для изготовления полупроводниковых приборов наиболее широко применяют кремний и германий (элементы четвертой группы периодической системы Д.И. Менделеева), а также некоторые химические соединения, например арсенид галлия, окись титана, антимонид индия, фосфид индия и др.

Схематическое изображение кристалла германия на плоскости показано на рис.1. Каждый атом в монокристалле германия окружен четырьмя соседними атомами, с которыми он связан парноэлектронными связями. В результате валентная оболочка каждого атома имеет восемь электронов, т. е. оказывается полностью заполненной. В таком кристалле все валентные электроны связаны между собой прочными парноэлектронными связями. Свободных электронов, которые могли бы участвовать в переносе зарядов, нет.

Чистые полупроводники при температуре абсолютного нуля (Т = 0ºК) являются идеальными диэлектриками.

Однако в нормальных условиях, при комнатной температуре, некоторые валентные электроны кристаллической решетки получают энергию, достаточную для разрыва ковалентной связи, т. е. для перехода электрона из валентной зоны в зону проводимости. Вследствие разрыва одной парноэлектронной связи образуются два носителя заряда: электрон и дырка.

При разрыве парноэлектронной связи электрон отрывается от атома, после чего одна связь в атоме оказывается незаполненной – свободной.

Незаполненная электронная связь в кристаллической решетке полупроводника называется дыркой. Дырка обладает положительным зарядом, по абсолютной величине равным заряду электрона, и, следовательно, является носителем положительного заряда.

Дырка может быть заполнена электроном, оторвавшимся от соседнего атома. Процесс заполнения электроном дырки называется рекомбинацией. При этом в соседнем атоме на месте ушедшего электрона образуется новая дырка.

В обычных условиях, т. е. при комнатной температуре, процесс возникновения пары электрон – дырка и рекомбинация происходят непрерывно. В результате устанавливается динамическое равновесие, при котором в чистом полупроводнике концентрация электронов равна концентрации дырок.

Наличие носителей зарядов в полупроводнике объясняет его проводимость. Проводимость чистого полупроводника, обусловленная электронами и дырками, возникающими только в результате разрыва парноэлектронных связей, называется собственной проводимостью.

При отсутствии внешнего электрического поля электроны и дырки перемещаются в объеме полупроводника беспорядочно. Если же к полупроводнику приложить напряжение, то в нем возникает упорядоченное движение электронов в одном направлении и дырок в другом – противоположном направлении. Через полупроводник протекает ток, который равен сумме токов электронного In и дырочного Ip.

Ток, протекающий в полупроводнике при равновесной концентрации носителей зарядов (электронов и дырок), называется дрейфовым током или током проводимости.

Полупроводник без примесей называют собственным полупроводником. Он обладает собственной электропроводностью, которая, как было показано, складывается из электронной и дырочной электропроводности.

Если в полупроводнике имеются примеси других веществ, то дополнительно к собственной электропроводности появляется еще примесная электропроводность, которая в зависимости от рода примеси может быть электронной или дырочной.

При добавлении в кристалл кремния элементов из пятой группы, например сурьмы Sb или фосфора P появляется несвязанный, свободный электрон. Таким образом, в кристалле кремния возникает электронная проводимость, а полупроводник называется n – типа. Примесь, образующая электронную проводимость, называется донорной.

Добавление в кремний трехвалентной примеси, например, галлия Ga или индия In приводит к тому, что три валентных электрона индия участвуют в образовании ковалентных связей с атомом кремния, а одна связь остается свободной. Таким образом, для образования четвертой ковалентной связи примесным атомам не хватает по одному электрону. В кристалле кремния образуется "дырка", способная присоединить свободный электрон. Такой полупроводник называется полупроводником с дырочной проводимостью или полупроводником p - типа, а соответствующая примесь называется акцепторной.

Подвижные носители зарядов, концентрация которых в данном полупроводнике преобладает, называются основными носителями зарядов.

Для получения полупроводника с электронной электропроводностью в чистый полупроводник – германий или кремний – вводят небольшое количество элемента пятой группы периодической системы элементов: сурьмы (Sb), мышьяка (As), фосфора (P). Их атомы взаимодействуют с атомами германия только четырьмя своими электронами образуя прочные парноэлектронные связи с четырьмя соседними атомами германия. Пятый валентный электрон, например атома мышьяка, в образовании парноэлектронной связи не участвует. Поэтому он оказывается слабо связанным со своим атомом и может быть легко оторван от него. В результате он превращается в свободный электрон, который может свободно перемещаться в объеме полупроводника, создавая электронную проводимость.

Для получения полупроводника с дырочной электропроводностью в кристалл чистого германия вводят примеси трехвалентных элементов: индий (In) и галлий (Ga) для германия; бор (В) и алюминий (Al) для кремния. При этом три валентных электрона, например индия, образуют три парноэлектронные связи с соседними атомами германия. В результате теплового движения электрон одного из соседних атомов германия может перейти в незаполненную связь атома индия. В атоме германия появится одна незаполненная связь – дырка. Захваченный атомом индия, четвертый электрон образует парноэлектронную связь и прочно удерживается атомом индия. Атом индия становится при этом неподвижным отрицательным ионом.

Принцип действия большинства полупроводниковых приборов основан на явлениях, происходящих на границе двух полупроводников с различными типами проводимости.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: