Билет 15 Половые хромосомы Х и У

1. Половые хромосомы и аутосомы. Сцепленное с полом наследование.

2. Реализация наследственной информации – биосинтез белка.

3. Установить характер наследования признака (доминантный или рецессивный, сцеплен с полом или аутосомный), генотипы детей в первом и во втором поколениях, используя предложенную схему наследования данного признака.

Вопрос 1

В клетках организмов содержится двойной набор гомологичных хромосом, которые называют аутосомами, и две половые хромосомы. В клетках женщин и самок многих животных содержится две гомологичные половые хромосомы, которые принято обозначать ХХ. В клетках мужчин и самцов многих животных половые хромосомы не являются парными – одна из них обозначается Х, другая У, таким образом, хромосомный набор у мужчин и женщин отличается одной хромосомой. У женщин в каждой клетке тела (кроме половых) 44 аутосомы и две половые хромосомы ХХ, а у мужчины – те же 44 аутосомы и две половые хромосомы Х и У. Во время формирования половых клеток происходит мейоз и число хромосом в сперматозоидах и яйцеклетках уменьшается в два раза. У женщин все яйцеклетки имеют одинаковый набор хромосом: 22 аутосомы и Х. У мужчин образуется два вида сперматозоидов, в соотношении один к одному – 22 аутосомы и Х, или 22 аутосомы и У. Если при оплодотворении яйцеклетка встретится со сперматозоидом, содержащим Х хромосому, то появится зародыш женского пола, а если со сперматозоидом, содержащим У хромосому, то образуется зародыш мужского пола. Определение пола у человека и других млекопитающих, дрозофил зависит от отсутствия или наличия У хромосомы в сперматозоиде, оплодотворяющем яйцеклетку. У бабочек, пресмыкающихся, птиц гомогаметен мужской пол, а у всех других организмов женский пол. Так кариотип петуха обозначается как XX, а кариотип курицы XY.

Распределение этих генов в потомстве должно соответствовать распределению половых хромосом в мейозе и их сочетанию при слиянии половых клеток в процессе оплодотворения.

Половые хромосомы Х и У содержат большое количество генов, определяющих наследование целого ряда признаков. Наследование этих признаков называют наследованием, сцепленным с полом, а локализацию генов в половых хромосомах называют сцеплением генов с полом.

Например, Х хромосома человека содержит доминантный ген А, определяющий свертывание крови. У человека, являющимся рецессивной гомозиготой по этому признаку, развивается тяжелое заболевание гемофилия, при котором кровь не сворачивается, и человек может погибнуть от малейшего повреждения сосудов.

Так как в клетках женщин две Х хромосомы, то наличие в одной из них гена а, не влечет за собой заболевание, так как во второй из них присутствует доминантный ген А. А в клетках мужчин есть только одна Х хромосома. Если в ней присутствует ген а, то у мужчины разовьется гемофилия, так как У хромосома не гемологична Х хромосоме и в ней не может быть гена А или а.

Схематично это выглядит

Р ХАХа (носительница гемофилии) * ХАУ (здоровый мужчина)

гаметы ХА; Ха ХА; У

F1 ХА ХА – здоровая девочка; ХАУ – здоровый мальчик; ХАХа – девочка-носитель; ХаУ – мальчик гемофилик

Вопрос 2

Процесс синтеза полипептидной цепи, осуществляемый на рибосоме, называют трансляцией (от лат. трансляцио — передача)


Условия и компоненты биосинтеза белка.

Биосинтез белка зависит от деятельности различных видов РНК.

· Информационная РНК (иРНК) служит посредником в передаче информации о первичной структуре белка и матрицей для его сборки.

· Транспортная РНК (тРНК) переносит аминокислоты к месту синтеза и обеспечивает последовательность их соединений.

· Рибосомальная РНК (рРНК) входит в состав рибосом, на которых происходит сборка полипептидной цепи. Процесс синтеза полипептидной цепи, осуществляемый на рибосоме, называют трансляцией (от лат. трансляцио — передача).

Для непосредственного биосинтеза белка необходимо, чтобы в клетке присутствовали следующие компоненты:

1. информационная РНК (иРНК) — переносчик информации от ДНК к месту сборки белковой молекулы;

2. рибосомы — органоиды, где происходит собственно биосинтез белка;

набор аминокислот в цитоплазме;

3. транспортные РНК (тРНК), кодирующие аминокислоты и переносящие их к месту биосинтеза на рибосомы;

4. ферменты, катализирующие процесс биосинтеза;

5. АТФ — вещество, обеспечивающее энергией все процессы.

Строение и функции тРНК.

Процесс синтеза любых РНК — транскрипция (от лат. транскрипций — переписывание) — относится к матричным реакциям). Теперь разберем строение транспортной РНК (тРНК) и процесс кодирования аминокислот.

Транспортные РНК представляют собой небольшие молекулы, состоящие из 70—90 нуклеотидов. Молекулы тРНК свернуты определенным образом и напоминают по форме клеверный лист. В молекуле выделяются несколько петель. Наиболее важной является центральная петля, в которой располагается антикодон. Антикодоном называют тройку нуклеотидов в структуре тРНК, комплементарно соответствующих кодону определенной аминокислоты. Своим антикодоном тРНК способна соединяться с кодоном иРНК.

На другом конце молекул тРНК всегда находится тройка одинаковых нуклеотидов, к которым присоединяется аминокислота. Реакция осуществляется в присутствие специального фермента с использованием энергии АТФ.
Сборка полипептидной цепи на рибосоме. Сборка цени начинается с соединения молекулы иРНК с рибосомой. По принципу комплементарности тРНК с первой аминокислотой соединяется антикодоном с соответствующим кодоном иРНК и входит в рибосому. Информационная РНК сдвигается на один триплет и вносит новую тРНК со второй аминокислотой. Первая тРНК передвигается в рибосоме. Аминокислоты сближаются друг с другом, между ними возникает пептидная связь. Затем иРНК вновь передвигается ровно на один триплет. Первая тРНК освобождается и покидает рибосому. Вторая тРНК с двумя аминокислотами передвигается на ее место, а в рибосому входит следующая тРНК с третьей аминокислотой. Весь процесс вновь и вновь повторяется. Информационная РНК, последовательно продвигаясь через рибосому, каждый раз вносит новую тРНК с аминокислотой и выносит освободившуюся. На рибосоме постепенно растет полипептидная цепь. Весь процесс обеспечивается деятельностью ферментов и энергией АТФ.
Сборка полипептидной цепи прекращается как только в рибосому попадает один из трех стоп-кодонов. С ними не связана ни одна тРНК. Освобождается последняя тРНК и собранная полипептидная цепь, а рибосома снимается с иРНК. Полипептидная цепь затем претерпевает структурные изменения и превращает в белок. Биосинтез белка закончен.

Процесс сборки одной молекулы белка длится в среднем от 20 до 500 с и зависит от длины полипептидной цеп и. Например, белок из 300 аминокислот синтезируется приблизительно за 15—20 с. Белки структурно и функционально очень разнообразны. Они определяют развитие того или иного признака организма, что является основой специфичности и неоднородности живого.

Реализация наследственной информации в клетке. Реализация наследственной информации в живом осуществляется в реакциях матричного синтеза, протекающих в клетке.

Редупликация ведет к построению новых молекул ДНК, что необходимо для точного копирования генов и их передачи дочерним клеткам от материнской при делении. Биосинтез белка также связан с генетическим кодом и генами. Посредством реакций транскрипции и трансляции, для которых необходимы РНК, аминокислоты, рибосомы, ферменты и АТФ, в клетке синтезируются специфические белки. Они определяют ее характерные признаки, т. к. в первую очередь при биосинтезе происходит сборка белков-ферментов, отвечающих за протекание жизненных реакций в клетке.

Биосинтез белка является частью процесса реализации генетической программы клетки и всего организма. Этот процесс, как и синтез РНК, и редупликация ДНК, относится к реакциям матричного синтеза. Но в отличие от двух последних реакций биосинтез белка протекает на органоидно-клеточном уровне организации живого.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: