Структура, механизм упрочнения и свойства

В волокнистых композитах особенность структуры заключается в равномерном распределении высокопрочных, высокомодульных волокон в пластической матрице (содержание их, т.е. объемная доля, может достигать 75%). В волокнистых композитах высокопрочные волокна воспринимают основные напряжения, возникающие в композиции при действии внешних нагрузок, и обеспечивают жесткость и прочность композиции в направлении ориентации волокон.

В результате совмещения армирующих элементов и матрицы образуется комплекс свойств композита, не только отражающих исходные характеристики его компонентов, но и включающие свойства, которыми изолированные компоненты не обладают. Появление ряда новых свойств в композитах связано с гетерогенной структурой, обусловливающей наличие большой поверхности раздела между волокнами и матрицей, что существенно повышает трещиностойкость материала.

Устойчивость любого твердого тела к распространению трещин определяется механизмом поглощения энергии в вершине растущей трещины. В композитах поперечные растягивающие напряжения на конце растущей трещины могут вызвать отслаивание волокон от матрицы, а сдвиговые напряжения на границе раздела – распространение отслоенных участков вдоль волокна. При отслаивании затрачивается энергия, поскольку волокна должны перемещаться относительно матрицы. Кроме того, при дальнейшем нагружении до разрушения волокна могут разрываться в матрице вдали от плоскости распространения трещины. Поэтому для армированных материалов характерны такие механизмы повышения вязкости разрушения, которых нет у гомогенных материалов.

Эти механизмы связаны с наличием в композиционных волокнистых материалов большого числа поверхностей раздела, которые могут стать тормозом на пути развития трещины. Можно отметить два явления, способствующих интенсивной диссипации энергии движения трещины – вытягивание волокон из матрицы и разрушение границы раздела между ними.

Повышенное сопротивление развитию разрушающих трещин в волокнистых материалах обусловлено их работоспособностью при значительных накопленных разрушениях.

Характерное для композитов высокое сопротивление усталости связано с тем, что высокомодульные волокна, воспринимающие основную нагрузку, как хрупкие материалы не снижают своей несущей способности при циклических нагрузках в отличие от пластически деформируемых материалов.

Армирование во­локнистых КМ может осуществляться по одноосной, двухосной и трехосной схеме (рис. 1.2, а).

Рис. 1.2 Схемы армирования волокнистых (а) и слоистых композиционных материалов (б)

Свойства волокнистых композитов в большой степени зависит от схемы армирования. Ввиду значительного различия в свойствах волокон и матрицы при одноосном армировании физическим и механическим свойствам присуща анизотропия. При нагружении растяжением временное сопротивление и модуль упругости КМ достигает наибольших значений в направлении расположения волокон, наименьших в поперечном направлении. Например, КМ с матрицей из технического алюминия АД1, упрочненный волокнами бора, в направлении волокон имеет σв = 1000 ÷ 1200 МПа, а в поперечном – всего 60 ÷ 90 МПа. Анизотропия свойств не наблюдается при двухосном армировании с взаимно перпендикулярным расположением волокон. Однако по сравнению с одноосным армированием прочность вдоль волокон уменьшается почти в 3 раза с 1000 до 350 МПа. Остаются низкими характеристики при сжатии и сдвиге.

Модуль упругости КМ сравнительно достоверно подсчитывают, исходя из свойств и объемного содержания волокон и матрицы:

Екм = ЕвVв + Ем(1-Vв).

Например, модуль упругости КМ с алюминиевой матрицей (Е = 70 ГПа), упрочненного 50об. % волокон бора (Е = 420 ГПа) равен 70х0,5+420х0,5 = 245 ГПа, что хорошо согласуется с модулем упругости реального композита ВКА-1 (табл.). Временное сопротивление КМ изменяется в зависимости от объемного содержания наполнителя также по закону аддитивности:

σкм = σвVв + σм(1-Vв),

где σв и σм - соответственно временное сопротивление волокна и матрицы.

Исключение составляют материалы с очень малым (<5%) или очень большим (>80%) содержанием волокон.

Малые значения прочности и жесткости КМ в направлении, перпендикулярном расположению волокон, при растяжении объясняется тем, что в этом случае, также как при сжатии и сдвиге, они определяются свойствами матрицы. Поэтому при изготовлении деталей из КМ волокна ориентируют так, чтобы с максимальной выгодой использовать их свойства с учетом действующих в конструкции нагрузок.

Большую роль играет матрица в сопротивлении КМ усталостному разрушению, которое начинается с матрицы. Гетерогенная структура поверхности раздела между волокном и матрицей затрудняет процесс распространения трещины в направлении, перпендикулярном оси волокон. В связи с этим КМ характеризуются высокими значениями предела выносливости. Так по пределу выносливости КМ на алюминиевой основе превосходят лучшие алюминиевые сплавы в 3 – 4 раза.

Прочность КМ в большой степени зависит от прочности сцепления волокон с матрицей. Для их качественного соединения необходимо обеспечивать хороший контакт (без загрязнений, газовых и других включений) по всей поверхности соединений.

Компози­ционные материалы относятся в основ­ном к термодинамически неравно­весным системам, что является главной причиной диффузионных процессов и химических реакций, происходящих на границе раздела между волокном и ма­трицей. Эти процессы протекают при изготовлении композиционных материа­лов и при их использовании. Некоторое взаимодействие между компонентами необходимо для обеспечения прочной связи между ними, передачи напряже­ний. Для металлических компози­ционных материалов прочная связь ме­жду волокном и матрицей осущест­вляется благодаря их взаимодействию и образованию очень тонкого слоя (1-2 мкм) интерметаллидных фаз. Если между волокнами и матрицей нет взаи­модействия, то на волокна наносят спе­циальные покрытия для его обеспече­ния, но прослойки образующейся при этом фазы должны быть очень тонкими. Связь между компонентами в композиционных материалах на неме­таллической основе осуществляется с помощью адгезии.

Плохой адгезией к матрице обладают высокопрочные борные, углеродные, керамические волокна. Улучшение сцепле­ния достигается травлением, поверх­ностной обработкой волокон, называе­мой вискеризацией. Вискеризация - это выращивание монокристаллов карбида кремния на поверхности углеродных, борных и других волокон перпендику­лярно их длине. Полученные таким образом «мохнатые» волокна бора на­зывают «борсик». Вискеризация способ­ствует повышению сдвиговых характе­ристик, модуля упругости и прочности при сжатии без снижения свойств вдоль оси волокна.

На поверхности соединения компо­нентов не должно происходить химиче­ских реакций, приводящих к поврежде­нию волокон, ухудшению их свойств и свойств композиционного материала.

При сильном взаимодействии компо­нентов временное сопротивление воло­кон и композиционного материала в це­лом значительно снижается. Например, временное сопротивление волокон кар­бида кремния в композиционном мате­риале с титановой матрицей в результа­те такого взаимодействия снизилось с 320 до 210 МПа, что вызвало сниже­ние временного сопротивления компо­зиционного материала на 30%. Для уменьшения взаимодействия применяют легирование как матрицы, так и волокон, защитные покрытия волокон, низкотемпературные и высокотемпературные способы изготовления КМ.

Кроме того, прочность сцепления волокон с матрицей зависит от их механической совместимости, на которую влияет разница в пластических свойствах, в коэффициентах Пуассона и линейного расширения, модулей упругости. Механическая несовместимость приводит к возникновению остаточных напряжений на границах раздела которые при достижении определенной величины вызывают разрушение связи между волокнами и матрицей.


Податливая матрица, заполняя пространство между волокон, обеспечивает совместную работу отдельных волокон за счет собственной жесткости и взаимодействия, существующего на границе раздела матрица - волокно. Следовательно, механические свойства композита определяются тремя основными параметрами: высокой прочностью армирующих волокон, жесткостью матрицы и прочностью связи на границе матрица – волокно.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: