Глава 2. На пути к скоростной авиации

Условием прогресса техники является опережающее развитие научно-исследова- тсльской деятельности. В 20-е годы авиация развивалась, главным образом, на основе научных достижений периода первой мировой войны. В свою очередь, научно-исследовательские и опытно-конструкторские работы, проводившиеся в 20-е годы, создали предпосылки для качественного скачка в эволюции самолетов в 30-е годы. Данная глава посвящена истории научных открытий и технических изобретений, оказавших революционное влияние на прогресс в авиационной технике в первой половине 30-х годов.

* * *

Как известно, в 20-е годы в конструкции самолетов использовались три основных типа обшивки: а) полотняная, не предназначенная для восприятия нагрузок; б) тонкая металлическая гофрированная поверхность, способная выдерживать только нагрузки на кручение; в) фанерная обшивка, которая, наряду с нервюрами и лонжеронами, участвовала в восприятии всех видов нагрузок в полете ("работающая обшивка").

Гладкая работающая обшивка, в отличие от гофра, не увеличивала общую ("смачиваемую") поверхность и, по сравнению с полотном, не провисала и не образовывала неровностей, а участие в восприятии нагрузок должно было обеспечивать меньший вес внутренней силовой конструкции. Однако на практике происходило по другому: из-за отсутствия надежных методов расчета тонкостенной подкрепленной оболочки (чем, с точки зрения прочнистов, является крыло с работающей обшивкой) ее вес оказывался намного больше, чем в случае использования полотняной или тонкой гофрированной металлической поверхности. Именно поэтому основоположник применения фанерной обшивки в авиастроении А. Фоккер на своих самолетах употреблял работающую обшивку только в конструкции крыла, фюзеляж же имел легкую полотняную обтяжку.

Первый шаг в развитии расчетов авиационной оболочечной конструкции был сделан во второй половине 20-х годов, когда научный сотрудник фирмы Рорбах Г. Вагнер создал "теорию диагональных напряжений". Согласно выводам Вагнера, подкрепленная по контуру металлическая пластина способна воспринимать возникающие в ней диагональные нагрузки даже после потери устойчивости и, следовательно, нет необходимости в применении очень частого подкрепляющего силового набора в виде нервюр и стрингеров [1]. В начале 30-х годов теория Вагнера получила дальнейшее развитие в работах немецкого ученого Т. фон Кармана, после войны работавшего в США. Карман вывел ряд формул для оценки предельных напряжений в полумонококовой конструкции, пригодных для инженерных расчетов. Правда, из-за ряда допущений в формулах расчеты приходилось проверять экспериментальным методом [2, с. 28-29].

Уточнению теоретических методов расчета свободнонесущего крыла с обшивкой, участвующей в восприятии нагрузок, способствовали исследования сотрудника НАКА П. Куна и нашего соотечественника В. Н. Беляева. Кун установил зависимость распределения напряжений в обшивке от внутренней силовой конструкции, а Беляев дал новый метод расчета свободнонесущего крыла и ввел понятие редукционного коэффициента, позволяющего привести все сечения крыла к материалу с единым модулем упругости [3, с. 75; 4, с. 300].

Новый взгляд на механизм восприятия нагрузок тонкостенной оболочкой способствовал распространению работающей обшивки в самолетостроении, т.к. выводы ученых свидетельствовали о том, что местная потеря устойчивости в обшивке не представляет опасности разрушения, и конструкция может быть легче, чем полагали прежде.

Пионером новых форм в самолетостроении стал американский конструктор Д. Нортроп. В 1927 г. он, работая на фирме Локхид, создал почтово-пассажирский самолет "Вега". Самолет имел свободнонесушее крыло и монококовый фюзеляж с фанерной обшивкой. Применение круглого фюзеляжа-монокока позволяло при тех же габаритных размерах примерно в полтора раза уменьшить площадь миделевого сечения по сравнению с распространенным тогда фюзеляжем с плоскими стенками, минимизировать величину "смачиваемой" поверхности и. в результате, уменьшить коэффициент лобового сопротивления самолета. "Вега" с успехом принимала участие во многих состязаниях, строилась в серии [5, с. 482].

В начале 30-х годов появились первые металлические самолеты с гладкой работающей обшивкой – Нортроп "Альфа", Локхид "Сириус" и др. В отличие от "Веги", они имели пол у монококовую конструкцию: тонкий металлический лист требовал больше стрингеров, нервюр и шпангоутов, чем более жесткая фанерная обшивка. Из-за отсутствия гофра аэродинамическое качество этих самолетов было намного выше, чем у пассажирских "Юнкерсов" и "Фордов" 20-х годов.

Таблица 2.1. Сравнительные характеристики некоторых пассажирских самолетов

Применение работающей обшивки позволило уменьшить относительную толщину свободнонесущего крыла. Воспринимающая изгибные напряжения обшивка дала возможность разгрузить лонжероны, а это означало, что при той же толщине полок строительная высота лонжерона, определявшая толщину крыла, могла быть уменьшена. В 30-е годы относительная толщина профиля монопланного крыла уменьшилась с 18-22 % до 14-15 %. Таким образом, внедрение работающей обшивки в авиастроении способствовало уменьшению как сопротивления трения, так и профильного сопротивления крыла.

* * *

Переход к более совершенным аэродинамическим формам самолетов обеспечил повышение их характеристик в полете, однако одновременно возникли трудности при заходе на посадку. С увеличением аэродинамического качества посадочная глиссада становилась все более пологой, а это создавало сложности при расчете точки касания аэродрома, затрудняло посадку в случае, если аэродром окружали горы, высокие деревья или здания. Таким образом выяснилось, что даже такая безусловно желательная величина как аэродинамическое качество имеет свои неблагоприятные стороны.

Поэтому на самолетах начали применять специальные поверхности на крыле для увеличения подъемной силы и лобового сопротивления при посадке. Аэродинамическое качество при отклоненных посадочных поверхностях снижалось, траектория посадки становилась более крутой, и приземлить самолет было проще.

Таблица 2.2. Влияние посадочной механизации на аэродинамические характеристики крыла [11,с. 148-149]

Самым ранним типом посадочной механизации является обычный (нещелевой) закрылок. Он появился как видоизменение элерона. При отклонении вниз закрылок повышает подъемную силу и сопротивление крыла за счет увеличения кривизны профиля. Первые опыты с такими устройствами проводились в Англии еще до первой мировой войны. В 1914-1916 гг. в России Ф. Ф. Терещенко вел работы по созданию самолета с изменяемой кривизной задней части профиля крыла [6. с. 121 -122]. Эксперименты показали прирост подъемной силы при отклонении закрылка, однако в те годы необходимости в посадочной механизации еще не было, и эксперимент так и остался экспериментом.

Как уже известно читателю, вскоре после первой мировой воины были изобретены щелевые предкрылки, позволившие улучшить срывные характеристики самолета. Это изобретение привело к появлению нового вида закрылка – щелевого. Опыты со щелевым закрылком начались практически одновременно в двух странах – Англии (Г. Хилл, фирма Хендли-Пейдж, 1920 г.) и Германии (О. Мадер, фирма Юнкерс. 1919-1921 гг.) [7, с. 81]. Благодаря дополнительной циркуляции эффективность щелевого закрылка была выше, чем обычного, особенно в случае крыла толстого профиля. Но нагрузки на крыло в начале 20-х годов были небольшие, аэродинамическое качество – невысокое и нужды в посадочной механизации не было. Хотя компания Юнкерс начала эксперименты со щелевыми закрылками сразу после войны. впервые такой закрылок появился на самолетах этой фирмы только в 1930 г. (Ju-52).

Одновременно с появлением щелевых закрылков в начале 20-х годов в США был изобретен расщепляющийся закрылок или щиток. Авторы этой конструкции – О. Райт и Д. Якобе [7, с. 82]. По степени увеличения коэффициента подъемной силы щиток занимал промежуточное место между обычным и щелевым закрылками. Однако он был проще но конструкции и легче по весу, а благодаря образованию разрежения за щитком после его раскрытия создавался значительный прирост воздушного сопротивления, что и требовалось для облегчения посадки на пассажирских самолетах с совершенными аэродинамическими формами.

В начале 30-х годов посадочные щитки были установлены на американских монопланах Нортроп "Гамма" и Локхид "Вега". Вскоре они стали применяться на самолетах других стран. В СССР впервые это сделали в 1933 г. в качестве эксперимента, расположив щитки вдоль задней кромки крыла легкого самолета А. С. Яковлева АИР-4. В годы второй мировой войны посадочные шитки имелись на большинстве наших боевых самолетов [4, с. 361].

С переходом на металлическую работающую обшивку вес конструкции возрос, т.к. для восприятия всего разнообразия нагрузок толщина металлического листа должна была быть больше, чем в случае гофрированной обшивки. Для компенсации этого недостатка конструкторы шли на уменьшение площади крыла. Однако увеличение нагрузки на площадь неизбежно вело к росту посадочной скорости. Поэтому с начала 30-х годов от посадочной механизации требовалось не столько уменьшение аэродинамического качества, сколько создание дополнительной подъемной силы.

Новое требование предопределило применение в авиации в 30-е годы так называемых закрылков Фаулера. Специфика этого приспособления заключалась в том, что закрылок выдвигался из крыла, создавая таким образом прирост подъемной силы не только за счет увеличения кривизны профиля, но и за счет увеличения площади крыла. В результате улучшения несущих свойств Су крыла оказывалось заметно больше, чем при применении других видов посадочной механизации.

X. Фаулер, американский инженер и изобретатель, пришел к окончательному варианту выдвижного закрылка в 1924 г. В 1927-1929 гг. он на собственные средства испытал свое изобретение на самолетах. Было установлено, что выдвижной закрылок с относительной хордой и размахом соответственно 40 % и 60 % увеличивает площадь крыла на 22 % и обеспечивает Су макс = 2,82 [8]. Однако из-за отсутствия большой потребности в увеличении Су нос в те годы и сложности закрылков Фаулера по сравнению с другими типами посадочной механизации эти эксперименты не вызвали особого интереса. Только несколько лет спустя, когда аэродинамические продувки и летные испытания подтвердили, что закрылки Фаулера являются наиболее эффективным средством увеличения подъемной силы и, когда было установлено, что при небольших углах отклонения они обладают малым сопротивлением и, следовательно, могут использоваться не только при посадке, но и при взлете, этот вид механизации крыла нашел применение в самолетостроении. Первыми серийными самолетами с закрылками Фаулера были немецкие Физилер Fi-97 (1934 г.) и Мессершмитт Ме-108 (1934 г.), а также двухмоторный американский самолет Локхид-14 (1937 г.).

По образцу закрылков Фаулера в СССР в ЦАГИ в 1936 г. был разработан выдвижной закрылок. Он отличался отсутствием направляющих в механизме выдвижения и уборки, что, по мнению разработчиков, должно было обеспечить большую надежность этого посадочного устройства |9 J. Выдвижной закрылок ЦАГИ применялся на известном советском бомбардировщике периода второй мировой войны Пс-2 и ряде экспериментальных военных самолетов 1939-1942 гг.

Особенно большой эффект посадочные закрылки давали в сочетании с отклонением предкрылков. Это было установлено во время конкурса на самый безопасный самолет, проводившегося в США в 1929 г. по инициативе Д. Гуггенхейма. Победитель этих состязаний, самолет Г. Кертисса "Танеджер", имел посадочную скорость при отклоненных закрылках и предкрылках всего 48 км/ч, при максимальной скорости полета 180 км/ч [10, с. 148].

Посадочная механизация крыла является одним из примеров преждевременных изобретений в авиации. Появившись еще до первой мировой войны, она получила распространение только через два десятилетия, когда возникла необходимость изменять аэродинамические свойства крыла в зависимости от режима полета. С середины 30-х годов щитки и закрылки стали обычными компонентами тяжелых многомоторных самолетов, часто применялись и на одномоторных машинах.

* * *

В 20-е годы в авиации широко использовались звездообразные двигатели воздушного охлаждения. Благодаря применению новых материалов и улучшению формы оребрения цилиндров удалось создать стационарные моторы большой мощности – свыше 500 л.с. По сравнению с двигателями водяного охлаждения они имели меньший удельный вес, были проще по конструкции, дешевле. Недостатком двигателей воздушного охлаждения являлось большое аэродинамическое сопротивление из-за выступающих в поток плохообтекаемых цилиндров с оребрением и большего миделя такого мотора. Так, коэффициент лобового сопротивления звездообразного двигателя "Юпитер-6" равнялся 0,760 [11, с. 247], тогда как для мотора с водяным охлаждением эта величина составляла только 0,045 (Испано-Сюиза 12 Ybrs) 112, с. 419].

В начале 20-х годов, когда скорость большинства самолетов не превышала 200 км/ч, с этим недостатком двигателя воздушного охлаждения еще можно было мириться. Однако по мере роста скорости летательных аппаратов и облагораживания их внешних форм доля аэродинамического сопротивления звездообразных двигателей стала весьма заметной. Попытки улучшить обтекаемость путем установки обтекателя на корпус коленвала и основания цилиндров (истребители Бристоль "Бульдог", И-5 и др.) не дали большого результата, т.к. основным источником сопротивления являлись оребренные головки цилиндров.

Во второй половине 20-х годов проводились опыты по применению индивидуальных обтекателей цилиндров (самолеты Блекберн "Линкок", Авиа ВН-33, Боинг Р-12). Однако этот способ оказался малоэффективным – Схо снизился только на 7 % 111, с. 247 |. К тому же, установка обтекателей за цилиндрами нередко приводила к перегреву двигателя.

Успех был достигнут на пути создания кольцевых капотов, полностью закрывающих двигатель. Напомню, что в эпоху применения ротативных двигателей такие капоты с вырезом в нижней части для обдува воздухом вращающихся цилиндров применяли на многих самолетах. В 20-е годы ротативные двигатели заменили стационарными и для надежного охлаждения цилиндров от капотов пришлось отказаться. Правда, в 1922 г. американский авиаконструктор В. Кларк применил цилиндрический капот-обтекатель на гоночном самолете Дайтон-Райт XPS-1 с двигателем воздушного охлаждения [7, с. 62], но из-за недоведенности двигателя испытания самолета были неуспешными.

В 1927 г. сотрудник Национальной физической лаборатории (NPL) в Англии Г. Тауненд занимался изучением обтекания тел, наподобие фюзеляжа-монокока или корпуса дирижабля. Он обнаружил, что при расположении кольцевой поверхности у передней части исследуемого тела суммарное аэродинамическое сопротивление уменьшается. Проходя через кольцо, поток ускорялся, а увеличение скорости обтекания препятствовало преждевременному отрыву потока и образованию вихрей. На основе этого открытия он разработал конструкцию обтекателя цилиндров звездообразного двигателя в форме узкого кольца. Этот тип капота получил название "кольцо Тауненда".

Применение кольца Тауненда позволяло уменьшить сопротивление двигателя примерно на 15 % [11, с. 248], при этом не возникало проблем с перегревом силовой установки. В 1930-1931 гг. обтекатели Тауненда были приняты в самолетостроении многих стран.

Одновременно с Таунендом изучением наилучшей формы обтекателя для авиационного двигателя воздушного охлаждения занимался американский экспериментатор Ф. Вейк. В результате опытов в натурной аэродинамической трубе в одном из научных центров НАКА в 1927 г. он нашел форму капота, позволявшую почти вдвое уменьшить лобовое сопротивление двигателя [11, с. 248]. Этот тип капота получил известность как капот НАКА. В отличие от кольца Тауненда, он полностью закрывал двигатель (рис. 2.1).

Капотирование двигателей воздушного охлаждения позволило уменьшить коэффициент лобового сопротивления силовой установки до величины того же порядка, что и на двигателях с водяным охлаждением. Вместе с тем. двигатели воздушного охлаждения были проще, легче, надежнее и дешевле, чем двигатели водяного охлаждения, т.к. отсутствовала водяная рубашка, радиатор и другие агрегаты системы охлаждения, не надо было заботиться о дол иве или замене охлаждающей жидкости, не было опасности остановки в полете двигателя из-за неисправности в системе охлаждения. Все это предопределило преобладающее использование звездообразных двигателей воздушнот охлаждения в авиации в 30-е годы.

Надо сказать, что вначале нашлось немало специалистов, которые были против применения капота НАКА на самолетах. Говорили, что установка капота ограничит обзор из кабины пилота, возникнут трудности с осмотром и ремонтом двигателя [13. с. 15]. Нередко предпочтение отдавалось применению кольца Тауненда, хотя аэродинамическая эффективность капота НАКА была намного выше. Но. как всегда случается, практический опыт победил эмоции и предположения. В 1929 г. капот НАКА с успехом прошел испытания на одномоторном почтово-пассажирском самолете Локхид "Вега" 5С, которые показали беспочвенность приведенных выше опасений. Благодаря закрытому капотом двигателю этот самолет обладал очень малым аэродинамическим сопротивлением (Схо=0.0278), что позволило пилоту Ф. Хоуку выполнить на "Веге" беспосадочный перелет через Соединенные Штаты от одного берега до другого за рекордно короткое время – 18 часов 13 минут [13, с. 16].

При попытке закапотировать двигатели на многомоторных самолетах конструкторы и ученые столкнулись с неожиданной проблемой. Когда капоты НАКА установили на трехмоторном пассажирском "Форде", выяснилось, что это мероприятие практически никак не повлияло на аэродинамическое сопротивление машины. Аэродинамические опыты в трубах показали, что капотирование дает положительный эффект только в том случае, если двигатель расположен в носу фюзеляжа или на передней кромке крыла[16]. Этот вывод оказал влияние на принципы проектирования будущих многомоторных самолетов.

К середине 30-х годов капоты НАКА стали непременной частью конструкции военных и пассажирских самолетов. Благодаря капотированию двигателей воздушного охлаждения максимальная скорость полета возросла на 6-10 %.

* * *

Рис.2.1. Схема работы кольца Тауненда (а) и капота НАКА (б)

В период первой мировой войны 1914- 1918 гг. и в первые послевоенные годы из-за плохих аэродинамических форм самолетов доля сопротивления шасси в общем сопротивлении летательных аппаратов была невелика – 10-15 %. Потеря скорости из-за выступающих под фюзеляж колес составляла 3-5 %, т.е. 3-7 км/ч при V K p=100-150 км/ч [14, с. 38]. Однако по мере улучшения внешних форм самолетов общая величина Сxо уменьшилась с 0,04-0,05 до 0,025-0,030; и доля сопротивления шасси в общем аэродинамическом сопротивлении увеличилась до 20-25 %. Поэтому авиаконструкторы занялись разработкой мер по снижению лобового сопротивления взлетно-посадочного устройства.

Первым шагом в усовершенствовании внешних форм шасси был переход от схемы с неразрезной осью к шасси пирамидального типа, в которых общая поперечная ось отсутствовала. Но расположенные в потоке стойки с амортизаторами и колеса по- прежнему служили источником большого сопротивления. Поэтому на шасси начали устанавливать обтекатели: вначале на стойки, а затем и на колеса. Одними из первых самолетов с обтекателями колес были американские Локхид "Сириус" и "Вега" (1930 г.). В начале 30-х годов обтекатели колес стали применяться на спортивных самолетах: АИР-7 А. С. Яковлева и американском гоночном Веделл-Вильямс-44, а также на военных машинах (истребитель И-5 Н. Н. Поликарпова и др.). Установка обтекателей на шасси безосного типа позволила уменьшить сопротивление последнего на 25 -30 % [15, с. 53].

Однако окончательное решение проблемы могло быть получено только в случае применения убирающегося в полете шасси. Ведь шасси используется только на коротком этапе взлета и посадки, все остальное время оно является источником ненужного сопротивления.

Идея убирающегося шасси возникла много веков назад – естествоиспытатели древности могли видеть, что птица, поднявшись в воздух, подтягивает вверх лапки и прижимает их к телу. Еще в XVI веке Леонардо да Винчи в проектах орнитоптеров предлагал убирать опоры после валета. В XIX столетии убираемое шасси предусматривалось в проектах самолетов Ф. дю Тампля, А. Пено, С. С. Неждановского и др. [16].

Однако на практике все было намного сложнее. Во-первых, надо было найти место куда убирать колеса и стойки. Во-вторых, требовалось обеспечить высокую надежность работы механизма уборки и выпуска шасси, ведь от этого зависела безопасность полета: посадка с невыпущенными колесами или, еще хуже, приземление с только одним выпущенным колесом была чревата самыми тяжелыми последствиями. Наконец, в-третьих, наличие механизма уборки и выпуска вело к увеличению общего веса конструкции, росту стоимости самолета, и надо было быть уверенным, что эти издержки оправдают выгоды от применения убирающегося шасси.

Впервые убирающееся шасси нашло применение на гоночных самолетах, для которых уменьшение лобового сопротивления было особенно важно. 11а рис. 2.2 показан американский спортивный скоростной моноплан Дайтон- Райт R В-1, построенный в 1920 г. для участия в воздушных гонках на приз Гордон-Беннета. В связи с расположением крыла в верхней части фюзеляжа было решено задвигать колеса в боковые стенки фюзеляжа. Уборка колес происходила вручную из кабины с помощью троса и ворота. К гоночным самолетам 20-х годов с убирающимся шасси относятся также американский "Вервилл-Сперри", английский самолет фирмы Бристоль [15, с. 72].

Несмотря на то, что убирающееся шасси прошло проверку на гоночных самолетах в начале 20-х годов, оно долгое время не имело практического применения. Причинами этого было отсутствие удачных схем уборки, неуверенность в безотказности действия механизма подъема и опускания колес, сложность уборки и выпуска шасси вручную, особенно на одноместном самолете. Да и небольшие скорости полета, характерные для первого послевоенного десятилетия, мало способствовали воплощению этого новшества в жизнь.

Иногда для специальных целей делали сбрасываемое шасси. Например, в 1927 г. французские летчики Нунжессери Копи при попытке перелета из Европы в Америку применили такое шасси на своем самолете. Шасси должно было быть сброшено после окончания полета над сушей, а посадку у берегов Америки предлагалось осуществить на воду, для чего фюзеляж был сделан водонепроницаемым. Благодаря сбросу шасси организаторы перелета надеялись "убить сразу двух зайцев" – уменьшить аэродинамическое сопротивление и снизить вес самолета. Но полет закончился трагически – самолет и оба летчика пропали без вести над Атлантическим океаном [17. с. 58].

Рис.2.2. Гоночный самолет RB-1 с убирающимися шасси

Толчком для развития убирающегося шасси послужило появление в 1930 г. в США скоростных гражданских самолетов с гладкой работающей обшивкой, усовершенствованными капотами двигателей. В связи с тем, что фюзеляж был занят полезной нагрузкой и убирать туда колеса было нельзя, для облегчения задачи уборки шасси вместо верхнерасположенного крыла конструкторы самолетов стали применять схему низкоплан. Первым таким самолетом стал Боинг "Мономейл" (1930 г.). Колеса вместе со стойками убирались в нижнюю поверхность крыла путем поворота вбок на 90°. Впоследствии эта схема уборки стала основной в авиастроении. В 1932 г. убирающееся шасси начали применять на почтово-пассажирских самолетах фирмы Локхид, в конструкции бомбардировщиков фирм Боинги Глеин-Мартин, а еще через два года такое шасси становится привычным на тяжелых самолетах. В случае расположения двигателей на крыле колеса обычно убирались в заднюю часть мотогондолы.

Труднее происходило введение убирающегося шасси на самолетах-истребителях, т.к., в отличие от пассажирских и транспортных машин, на многих из них еще применялось бипланное крыло, толщина которого была недостаточна для размещения там колес. Поэтому на первых истребителях шасси обычно приходилось убирать в фюзеляж, примерно как на описанном выше гоночном самолете Дайтон-Райт R В-1, В частности, такая схема уборки колес применялась на американских истребителях фирм Кертисс и Грумман, впервые поднявшихся в воздух в 1932 г. В СССР первыми истребителями с убирающимся шасси были И-М (АНТ-31), сконструированный П. О. Сухим под общим руководством А. Н. Туполева, и И-16 Н. Н. Поликарпова (оба – 1933 г. постройки). По сравнению с американскими, эти самолеты имели более совершенную схему с низкорасположенным свободнонесущим крылом, в которое и убиралось шасси.

Первое время летчики настороженно относились к описываемому новшеству, опасаясь, что в нужный момент механизм выпуска колес не сработает. По этой причине иногда делали так называемое полу убирающееся шасси или шасси "с подтягом". Например, на известном пассажирском самолете Дуглас DC-3, появившемся в 1935 г., колеса не до конца убирались в мотогондолы, выступая примерно на полметра. В результате в случае отказа механизма выпуска шасси пилот сажал бы самолет не на "брюхо", а на колеса.

Полуубирающееся шасси просуществовало недолго, т.к. выступающие колеса вызывали дополнительное сопротивление в полете. В 30-е годы в результате усовершенствования механизмов выпуска и уборки (они стали приводиться в действие электричеством, гидравликой или сжатым воздухом) и появления специальных "аварийных" систем выпуска вероятность отказа привода шасси стала очень мала, и к моменту начала второй мировой войны практически все военные и коммерческие самолеты имели полностью убираемое шасси.

* * *

История внедрения винтов изменяемого шага в практику самолетостроения имеет много общего с историей начала применения убирающегося шасси и закрылков. И то, и другое, и третье было изобретено еше на заре авиации, но вошло в практику только в 1930-е годы, когда скорость самолетов возросла настолько, что возникла насущная необходимость "перенастраивать" конструкцию в зависимости от режима полета. При этом внедрение нового происходило в условиях критики со стороны консервативно настроенных инженеров и ученых, считавших эти нововведения не только бесполезными, но и опасными.

Винтом изменяемого шага (ВИШ) называется пропеллер, лопасти которого могут поворачиваться вокруг продольной оси для изменения угла атаки, т.е. "шага" винта. В отличие от крыла, угол атаки лопасти зависит от числа оборотов двигателя и скорости полета. От того, насколько отличается этот угол от оптимального, зависят полезная мощность двигателя и тяга пропеллера. Стремление свести к минимуму это расхождение и улучшить тем самым тяговые характеристики силовой установки и привело к началу работ по замене винта с фиксированными лопастями винтом изменяемого шага.

Первые предложения о применении винта изменяемого шага на самолете появились еще в 70-е годы прошлого века [16, с. 35-36]. В 1910 г. русский техник-самоучка Л. В. Школин применил ВИШ на самолете собственной конструкции, но отсутствие средств не позволило ему довести эти работы до стадии летных испытаний [18, с. 44]. Были и другие проекты, но интереса они не вызвали: диапазон скоростей первых самолетов был очень небольшим, и использование винта изменяемого шага не привело бы к заметному улучшению летных качеств.

Во время первой мировой войны скорость и высота полета самолетов значительно возросли. Это послужило импульсом к применению ВИШ в авиации. В Германии в 1918 г. профессор Г. Рейснер установил пропеллеры с поворотными лопастями на многомоторном высотном бомбардировщике R-30. В Англии на Королевском авиационном заводе (RAF) в 1917-1918 гг. проводились опыты по применению ВИШ на однодвигательных самолетах ВЕ-2с и RE-8. Лопасти могли поворачиваться на угол 10°. Эксперименты с ВИШ велись также в Канаде и США[7, с. 72; 19, с. 258- 259].

Летные исследования продемонстрировали аэродинамические преимущества винтов изменяемого шага. Вместе с тем выяснилось, что при увеличении мощности двигателей применяемый в те годы механический привод изменения угла установки лопастей из-за интенсивного износа быстро выходит из строя. Кроме этого, с ростом мощности силовой установки нагрузки на рукоятке управления шагом винта становились недопустимо велики.

Выход был найден в замене механического привода гидравлическим. Практические работы в этой области начались в Англии вскоре после войны. Их возглавили профессор Хеле-Шоу и Т. Бичем. В 1924 г. они получили патент №250292 на гидравлический привод управления лопастями воздушного винта, причем изменение шага должно было происходить автоматически, в зависимости от режима полета при неизменных оборотах двигателя. Такой винт получил название ВИШ-автомат или винт постоянных оборотов.

Идея Хеле-Шоу и Бичема не встретила понимания и поддержки. Являясь приверженцами нескоростного самолета-биплана, английские авиаконструкторы не видели необходимости в отказе от обычного пропеллера. Так считали и многие ученые. Например, два крупнейших английских специалиста по проектированию воздушных винтов – Э. Лайнам из Авиационного научно-исследовательского института (R АЕ) и Г. Уотте (фирма Metal Propellers) были единодушны во мнении, что больший вес конструкции винта изменяемого шага сведет на нет все его аэродинамические достоинства [20].

Создание ВИШ типа Хеле-Шоу-Бичема задержалось также из-за ряда технических проблем. Для снижения весовых издержек предполагалось использовать пустотелые стальные лопасти, но они оказались недостаточно прочными, при испытаниях часто происходили поломки. Только после того, как их заменили на сплошные алюминиевые лопасти, неприятности прекратились. Неблагоприятно влияли на темп работ и финансовые трудности на фирме Глостер, взявшейся за внедрение конструкции Хеле-Шоу-Бичема в практику.

В результате всех этих неурядиц промышленный выпуск ВИШ-автоматов английской конструкции начался только в 1937 г. Начав первой, Англия в середине 30-х годов была вынуждена производить винты изменяемого шага по купленной в США лицензии.

Стимулом к разработке ВИШ в США послужило появление в конце 20-х годов скоростных монопланов. По сравнению с бипланами периода первой мировой войны и первых послевоенных лет диапазон скоростей этих самолетов был примерно в полтора раза больше. После применения в авиации закрылков разница между минимальной и максимальной скоростями еще больше возросла. В результате винт фиксированного шага, оптимизированный для взлетного режима, терял до 35-40 % своей мощности при полете на максимальной скорости, и наоборот, винт, спроектированный для режима V макс, работал с неполной тягой на взлете (рис. 2.3). Все это заметно сказывалось на скорости, скороподъемности, длине разбега и других характеристиках.

Пионером производства ВИШ в США стала фирма Гамильтон-Стандарт, одна из первых освоившая в 20-е годы выпуск металлических пропеллеров. Конструктор Ф. Колдуэлл, так же как и английские ученые, остановил свой выбор на ВИШ с гидроприводом, но для облегчения задачи решил изготовить пропеллер с ручной регулировкой шага. С помощью особой рукоятки летчик мог установить лопасти в два положения – взлет и горизонтальный полет. Благодаря упрощенной конструкции привода и поддержке со стороны американских авиафирм Колдуэлл, начавший работы на несколько лет позже, чем Хеле-Шоу и Бичем, уже в 1930 г. испытал свой пропеллер на самолете, а еще через два года был налажен серийный выпуск ВИШ фирмы Гамильтон-Стандарт. В 1933 г. такие пропеллеры стали устанавливать на двухмоторном пассажирском самолете Боинг-247. Это даю большой эффект: длина разбега сократилась на 20 %, скороподъемность увеличилась на 22 %, крейсерская скорость – на 5,5%, высота полета при работе только одного двигателя возросла с 600 до 1200 м [7, с. 74]

Пример с Боингом был настолько впечатляющим, что с тех пор все американские авиаконструкторы скоростных самолетов стали применять винты изменяемого шага. Только за первый год производства Гамильтон-Стандарт выпустила около 1000 винтов изменяемого шага [7, с. 75]. В 1934-1935 гг. лицензии на производство ВИШ купили у нее фирмы Де Хевилленд в Англии. Испано-Сюиза во Франции, Юнкерс в Германии.

Рис.2.3. Изменение полезной мощности при использовании различных типов винтов: 1 – винт фиксированного шага: 2,3 – винт изменяемого шага

В 1934 г. фирма Гамильтон-Стандарт произвела опытный образец ВИШ с автоматическим изменением положения лопастей и после двух лет испытаний и доводок начала их серийный выпуск. Автоматизация освободила пилота от утомительной необходимости регулировки режима работы мотора и винта, повысила точность выбора угла установки лопастей.

Конкурентом ВИШ с гидроприводом были винты с электроприводом изменения шага. По сравнению с гидроприводом электропривод имел свои плюсы и минусы: ВИШ с электроприводом не требовал установки дополнительных агрегатов на двигателе (насос и др.), но возникали трудности размещения электромотора внутри втулки винта. В связи с этим внедрение ВИШ с электроприводом происходило параллельно внедрению винтов с гидравлическим управлением, один тип не вытеснял другой.

Первый удачный ВИШ с электроприводом построил канадский инженер У. Терн- булл в 1927 г. В 1928 г. американская фирма Кертисс-Райт купила права на производство таких пропеллеров и стала основным конкурентом Гамильтон-Стандарт. После замены деревянных лопастей алюминиевыми и ряда мелких усовершенствований Кертисс-Райт начала промышленный выпуск ВИШ. Винты с ручным управлением скоро были заменены ВИШ-автоматами. В 1935 г. фирма произвела первые 50 регулируемых пропеллеров для "летающих лодок" ВМС США Консолидейтед PBY "Каталина", с 1937 г. ВИШ фирмы Кертисс-Райт применялись на американских пассажирских самолетах Локхид-14 [7, с. 76].

В 30-е годы ВИШ с электроприводом стали выпускать также европейские компании. Немецкая фирма VDM занялась разработкой такого типа пропеллера в 1933 г., а в 1937 г. начала его промышленное производство. Большинство немецких военных самолетов периода второй мировой войны имело ВИШ фирмы VDM. В отличие от винтов фирмы Кертисс-Райт на немецких самолетах электромотор системы регулировки лопастей был расположен в моторном отсеке, а не во втулке винта. Во Франции выпуск авиационных винтов-автоматов с электроприводом в 1935-1938 гг. наладила фирма Ратье.

Появление винтов изменяемого шага было последним крупным нововведением в конструкции самолетов первой половины 30-х годов – эпохи перехода к скоростной авиации.

Таблица 2.3. Даты внедрения некоторых технических новшеств в авиастроении

Значительный временной интервал между изобретением и его практическим использованием (табл. 2.3) можно объяснить тем, что указанные изобретения были сделаны раньше, чем возникла потребность в них. Применение гладкой металлической обшивки, убираемого шасси, посадочной механизации и т.д. могли дать заметный эффект только на скоростных самолетах, развивающих 300 и более км/ч, а в начале 20-х годов таких самолетов еще не было.

Тот факт, что коренные изменения в конструкции самолетов начались, прежде всего, в гражданской авиации США, объясняется тем, что американская пассажирская авиация, в отличие от военной авиации и авиастроения в других странах, не получала государственных субсидий, и в борьбе за выживание авиационные фирмы незамедлительно применяли любые новшества, способные улучшить качество продукции и повысить се конкурентноспособность на мировом рынке.

ГЛАВА 3. РАЗВИТИЕ КОНСТРУКЦИИ САМОЛЕТОВ В ПРЕДВОЕННЫЕ ГОДЫ
Первые скоростные пассажирские самолеты

В предыдущей главе была изложена история некоторых изобретений в области самолетостроения. В данном разделе будет описано как они воплощались в практику мировой авиации и какое влияние оказали на конструкцию и характеристики самолетов.

Таблица 3.1. Технические новшества в конструкции скоростных гражданских самолетов конца 20-х – первой половины 30-х годов

Примечание: ЧД – число двигателей, MK – металлическая конструкция; СК – свободнонесущее крыло; НК – низкорасположенное крыло; ПМ – посадочная механизация; УШ – убираемое шасси. ‹Д – закапотированный двигатель воздушного охлаждения ВИ – винт изменяемого шага; N – число пассажиров.

Как уже отмечалось, технические новшества впервые нашли практическое применение в гражданской авиации. В таблице 3.1 показана динамика нововведений. На основе этих данных можно выделить 3 этапа в развитии модернизированных пассажирских самолетов (до середины 30-х годов»:

– конец 20-х годов-1932 г, – создание одномоторных скоростных самолетов- монопланов с частичным использованием изобретений, направленных на улучшение обтекаемости летательных аппаратов;

– 1933-1934 гг. – появление двухмоторных пассажирских скоростных самолетов. В конструкции большинства из них применены все описанные выше технические изобретения;

– 1934- 1935 гг. – создание двухмоторных пассажирских самолетов с повышенной пассажировместимостью.

Рассмотрим подробнее каждый из этих этапов.

Инициатором постройки первых хорошо обтекаемых коммерческих самолетов был молодой американский конструктор Д. Нортроп. В 20-е годы Нортроп работал в мало кому известной тогда авиастроительной фирме Локхид. По собственной инициативе он начал проектировать почтово-пассажирский самолет "Вега" с только что появившимся двигателем воздушного охлаждения Пратт-Уитни "Уосп" мощностью 420 л.с. В 1927 г., состоялся первый полет этого самолета.

Локхид "Вега" представлял собой деревянный свободнонесущий моноплан с верхнерасположенным крылом. От других гражданских самолетов тою времени он отличался гладкой работающей обшивкой и хорошо обтекаемым фюзеляжем цилиндрической формы. Фюзеляж имел полумонококовую конструкцию и был выполнен из нескольких слоев фанеры, склеенных друг с другом под большим давлением.

Не закрытый капотом двигатель, неубираемое шасси, отсутствие посадочной механизации не позволяют отнести Локхид "Вега" к классу пассажирских машин нового поколения. Тем не менее, благодаря хорошему двигателю и обтекаемым формам фюзеляжа, скорость этого самолета была примерно на 50 км/ч больше, чем у других коммерческих самолетов второй половины 20-х годов. Не случайно он получил название "Воздушный экспресс". Самолет мог перевозить 5 человек на расстояние окаю 1000 км с крейсерской скоростью 243 км/ч.

В 1929 г. фирма Локхид выпустила вариант "Вега" 5С (рис. 3.1.), который ознаменовал собой новый шаг в развитии аэродинамически совершенного самолета. На этой машине впервые применили капот NACA, позволивший значительно уменьшить аэродинамическое сопротивление звездообразного двигателя воздушного охлаждения. Уменьшению лобового сопротивления содействовали также обтекатели колес шасси, форма которых, как и форма капота, была выбрана на основе аэродинамических исследований в NACA. В результате указанных мер "Вега" 5С развивала на 30 км/ч большую скорость, чем "Вега" образца 1927 г. Это был первый пассажирский самолет, способный летать со скоростью более 300 км/ч. Коэффициент лобового сопротивления "Веги" 5С равнялся 0.0278, а максимальное аэродинамическое качество составляло 11,4 – величина, мало отличающаяся от аэродинамических параметров современных самолетов с неубираемым шасси [1, с. 83].

Высокие летные характеристики самолета Локхид "Вега" 5С продемонстрировали авиационные перелеты. В 1931 г. летчик В. Пост и штурман Г. Гэтти облетели на "Веге" вокруг земного шара за 8 дней 15 часов и 51 минуту, установив новый рекорд скорости. Через два года В. Пост на том же самолете в одиночку выполнил кругосветный перелет, на этот раз за 7 дней 18 часов 49 минут. В 1932 г. американская летчица Э. Эрхарт пересекла на "Веге" Атлантический океан во время полета из США в Европу и стала первой женщиной, повторившей достижение знаменитого Ч. Линдберга [2, с. 609].

Рис.3.1. Локхид "Вега" 5С

Дальние перелеты принесли самолету известность. Локхид" Вега" стал применяться для перевозок пассажиров на внутренних американских авиалиниях. Он брал на борт 6 человек и мог перевозить их на расстояние 890 км с невиданной по тем временам скоростью.

Между тем Д. Нортроп основал самостоятельную самолетостроительную фирму и занялся проектированием скоростных самолетов-монопланов. В 1930 г. появился самолет Нортроп "Альфа", предназначенный для перевозки пассажиров и почты (рис. 3.2). Он имел два важных усовершенствования по сравнению с описанными выше самолетами марки "Вега". Это, во-первых, цельнометаллическая конструкция с работающей обшивкой. Как известно, в 30-е годы металлическое самолетостроение почти полностью вытеснило деревянное. На смену тихоходным металлическим самолетам с гофрированной обшивкой пришли скоростные монопланы с гладкой работающей обшивкой, имеющие намного меньшее лобовое сопротивление. Нортроп Альфа" стал первым в ряду этих машин.

Рис.3.2. Нортроп "Альфа" и Лзрокосмическом музее (Вашингтон)

Во-вторых, в отличие от "Веги" и большинства других самолетов-монопланов того времени, "Альфа" имела низкорасположенное крыло. С появлением на самолетах убираемого шасси такая схема стала общепринятой, т.к. убирать стойки и колеса в крыло было проще, чем в фюзеляж. Правда. Нортроп "Альфа" имел неубирающееся шасси, поэтому не вполне ясно, чем обосновывался выбор низкопланной схемы в данном случае. Можно предположить, что эта компоновка была принята Нортропом в предвидении перехода в ближайшем будущем к убирающимся в полете колесам.

Применение низкорасположенного крыла в сочетании с монококовым фюзеляжем вызвало новую проблему: изменение характера обтекания в месте сочленения горизонтальной и цилиндрической поверхностей приводило к росту так называемого сопротивления интерференции – аэродинамического сопротивления, вызванного взаимовлиянием обтекаемых частей. Для устранения этого недостатка Нортроп использовал специальные поверхности – "наплывы", закрывающие ту часть у корня крыла, которая являлась источником дополнительного сопротивления. Форма наплывов была разработана на основе экспериментов в Калифорнийском технологическом институте [3, с. 64]. С этого времени наплывы в месте соединения крыла и фюзеляжа стали применяться на всех самолетах-низкопланах с фюзеляжем овальной формы.

Наряду с прогрессивными конструктивными особенностями самолет Д. Нортропа имел неубирающееся шасси, открытую кабину пилота, слишком малую нагрузку на крыло. В результате при одинаковых двигателях он заметно уступал по скорости самолету "Вега" 5С. Поэтому Норгроп "Альфа" имел меньшее распространение, чем первые скоростные монопланы фирмы Локхид. Было выпущено только несколько самолетов, которые использовали для перевозки почты, реже – для пассажирских перевозок.

В 1933 г. Нортроп создал усовершенствованный вариант ("Дельта") с более мощным двигателем, обтекателями колес шасси, закрытой кабиной пилота и закрылками на крыле. Благодаря этим мерам скорость самолета возросла на 70 км/ч. Самолет мог брать на борт 6 пассажиров. Построенный в 32 экземплярах, он некоторое время применялся на линиях авиакомпаний Пан-Америкен и TWA [2, с. 713].

Третьей американской фирмой, включившейся в создание скоростных самолетов- монопланов, была фирма Боинг. В 1930 г. она произвела почтово-пассажирский одномоторный самолет "Мономейл". Как уже отмечалось, это был первый коммерческий самолет с убирающимся шасси. Таким образом, этот самолет воплощал в себе все технические новшества кроме посадочной механизации крыла и винта изменяемого шага. Однако именно из-за отсутствия закрылков и ВИШ самолет оказался не очень удачным и не пошел в серию. Сравнительно небольшая нагрузка на крыло не позволила использовать все достоинства аэродинамической схемы[17]. Следует также сказать, что в отличие от других описанных здесь машин, двигатель самолета был закрыт кольцом Тауненда, являвшимся, как известно, менее совершенным типом обтекателя, чем капот NACA. При испытаниях максимальная скорость"Мономейла" составила всего 254 км/ч.

Самым удачным из скоростных пассажирских самолетов первого поколения (одномоторные 5-6-местные машины) был Локхид "Орион" (рис. 3.3). Это – первый пассажирский самолет, снабженный посадочной механизацией. Применение закрылков позволило увеличить нагрузку на крыло до 100 кг/м²- величины, которая в те годы применялась только на специальных гоночных самолетах. Это, а также сравнительно небольшой вес самолета позволили конструкторам фирмы Локхид избежать недостатков пассажирского Боинга. Благодаря убирающемуся шасси и другим мерам по улучшению обтекаемости в полете коэффициент лобового сопротивления "Ориона" составлял всего 0,021. Самолет мог брать на борт 6 пассажиров и лететь с ними на расстояние 1200 км с крейсерской скоростью 320 км/ч; максимальная скорость достигала 360 км/ч [1, с. 89]. Это был самый скоростной американский пассажирский самолет первой половины 30-х годов.

Рис.3.3. Локхид "Орион"

В Европе вначале с недоверием отнестись к сообщениям об успехах американских авиаконструкторов. Только после того, как Локхид "Орион" с 1932 г. стал применяться на авиалинии Цюрих-Мюнхен-Вена, европейские авиационные специалисты смогли убедиться в эффективности мер, направленных на снижение аэродинамического сопротивления. По скорости "Орион" превосходил самолеты-истребители того времени, не говоря уже о бомбардировщиках. С этого момента началась повсеместная модернизация самолетного парка.

Считается, что первым в Европе скоростным пассажирским самолетом был германский Хейнкель Не-70, совершивший первый полет 1 декабря 1932 г. [3, с. 69; 5, с. 401]. Однако на самом деле первый серийный скоростной пассажирский самолет – ХАИ-1 (рис. 3.4) – создали в СССР. Первый полет ХАИ-1 состоялся 8 октябре 1932 г. |8, с. 443]. Его построили в Харьковском авиационном институте под руководством профессора И. Г. Немана. По схеме и конструкции он напоминал Локхид "Орион", но из- за отсутствия посадочной механизации имел большую площадь крыла. Мощность мотора М-22 составляла 480 л.с., пассажировместимость – 6 человек. Фюзеляж представлял собой монокок, выклеенный из нескольких слоев шпона. Кабина летчика закрывалась обтекаемым фонарем с длинным гаргротом, в котором находились топливные баки. Для уменьшения сопротивления трения все деревянные поверхности были оклеены полотном и покрыты лаком. Шасси убиралось в крыло с помощью тросового привода. Согласно проведенному автором расчету, коэффициент лобового сопротивления ХАИ-1 был равен 0,022.

Во время летных испытаний осенью 1932 г. ХАИ-1 показал скорость 300 км/ч, летчики отмечали его хорошую управляемость, отсутствие вибраций в полете. В момент своего появления это был самый скоростной в Европе пассажирский самолет. Основным недостатком ХАИ-1 явилась неудовлетворительная работа механизма ручной уборки и выпуска шасси. Летчик должен был тратить много времени на вращение штурвальчика, внимательно следить за правильностью укладки тросов в канавках шкива. Из-за отказа замков фиксации стоек колес опытный экземпляр самолета потерпел аварию: при разбеге у него сложились шасси. Отмечалась также недостаточная прочность некоторых элементов конструкции.

Рис.3.4. ХАИ-1

Необходимость доработок задержала ввод самолета в эксплуатацию до 1936 г., а всего было построено 43 ХАИ-1, которые использовались на авиалиниях до конца 1940 г. [7, с. 379-380].

В конце 20-х годов были сняты ограничения на развитие авиации в Германии. Это дало стимул авиаконструкторам к созданию скоростных самолетов. Первый немецкий самолет, летающий со скоростью более 300 км/ч, построил Э. Хейнкель. Работы по проектированию этой скоростной пассажирской машины начались по заказу крупнейшей немецкой авиакомпании Люфтганза и Министерства транспорта, увидевших в новом поколении американских коммерческих самолетов опасного конкурента национальной авиапромышленности.

Не располагая столь же совершенными двигателями воздушного охлаждения, как американские, Хейнкель решал установить на самолете двигатель водяного охлаждения фирмы BMW мощностью 500 л.с. Это предопределило заметные отличия в облике самолета, т.к. известно, что форма фюзеляжа во многом зависит от типа силовой установки. Хейнкель Не-70 имел вытянутый вверх овальный металлический монококовый корпус со сравнительно небольшим миделем, деревянное крыло эллиптической формы с работающей фанерной обшивкой и такой же формы оперение (рис. 3.5). Шасси убиралось в крыло с помощью гидропривода; имелся и резервный механический привод уборки и выпуска шасси. Для уменьшения сопротивления в полете радиатор также мог убираться в фюзеляж. Пассажирская кабина была рассчитана на 4 человек, кроме того предусматривалась возможность размещения одного пассажира в кабине пилотов. Крыло не имело посадочной механизации, конструктор пошет на увеличение нагрузки на м² за счет большей посадочной скорости (110км/ч). Крейсерская скорость полета He-70 составляла 323 км/ч – больше, чем у любого другого пассажирского самолета того времени. Весной 1933 г. летчик Люфтганзы Унтхун установил на самолете 8 мировых рекордов скорости; в частности, на нем была достигнута скорость 357,4 км/ч с полезной нагрузкой в 1 тонну [5, с. 401].

Рис-3.5. Хейнкель He-70.

Не-70 был первым в Германии самолетом с убирающимся шасси. С этим связан один забавный случай. Служащие аэродрома, на который должен был совершить посадку Не-70, не зная об особенностях этой машины, увидев самолет, подняли тревогу, решив, что он потерял в полете шасси, и сейчас произойдет авария [8, с. 105-106].

Всего построили 28 Не-70, из них 14 – для Люфтганзы. Самолет заинтересовал соседние государства. СССР хотел купить для изучения два экземпляра Не-70, а Англия даже собиралась строить эти машины у себе по лицензии. Однако немецкое правительство отвергло все эти предложения, не желая знакомить с передовой техникой своих потенциальных противников.

В конструкции пассажирских скоростных самолетов конца 20-х – начала 30-х годов только отчасти были воплощены технические усовершенствования, описанные в предыдущей главе. В частности, ни один из них не имел винта изменяемого в полете шага, обычно не устанавливалась посадочная механизация крыла. Это сдерживало потенциальные возможности летательных аппаратов. Тем не менее, был достигнут значительный прогресс в увеличении скорости воздушных перевозок.

Таблица 3.2. Сравнение технических, аэродинамических и экономических характеристик американских пассажирских самолетов [1; 3]

Как известно, себестоимость воздушных перевозок напрямую зависит от скорости (а=А/Кком * mп.н. * Vрейс, где А – расходы на эксплуатацию самолета в течение 1 летного часа, Кком – коэффициент коммерческой загрузки, mп.н. – вес полезной нагрузки, Vрейс – рейсовая скорость самолета). Казалось бы, с ростом скорости можно было ожидать, по меньшей мере, полуторократного снижения стоимости воздушного транспорта. Этого, однако, не случилось. Существенным недостатком

одномоторных скоростных коммерческих самолетов была их небольшая пассажировместимость. Из сравнения характеристик самолетов Форд "Тримотор" и Локхид "Вега" 5С (табл. 3.2) видно, что, несмотря на большое преимущество в скорости, 6-местная "Вега" имела меньшую часовую производительность, чем 13-местный "Форд".

Неудивительно, что одномоторные самолеты часто использовались для перевозки почты, а не пассажиров. Ведь плотность полезной нагрузки в этом случае значительно выше, следовательно больше и транспортная эффективность полета.

Таким образом, для успешного развития скоростного воздушного транспорта нужно было увеличить число пассажирских мест. Для этого следовало строить многомоторные пассажирские самолеты. Их появление диктовалось также требованиями повышения безопасности полета: в случае наличия одного двигателя его поломка в воздухе могла привести к катастрофе. Поэтому на смену одномоторным скоростным пассажирским самолетам в скором времени пришли многомоторные машины.

В 20-е годы большинство многомоторных самолетов гражданского назначения имели три двигателя – один в носовой части фюзеляжа и два на крыле. В случае остановки одного из двигателей эта компоновка обеспечивала полет на двух остальных, работающих на полной мощности. К началу 30-х годов, в результате усовершенствования конструкции мотора и повышения качества топлива, удельная мощность двигателей значительно возросла, улучшились и другие параметры. В результате мощность двигателя при том же весе возросла примерно в полтора раза (табл. 3.3). К тому же увеличилось аэродинамическое качество самолетов. Все это позволило выполнять полет двухмоторного самолета при отказе одного двигателя. Так на смену трехмоторным гражданским самолетам пришли двухмоторные. Помимо меньшей стоимости это давало возможность значительно улучшить обтекаемость фюзеляжа, т.к. носовой двигатель был источником дополнительного аэродинамического сопротивления. В 1930 г. двухдвигательные машины составляли 14 % от общего числа новых типов пассажирских самолетов, в 1933г. – 29 %,ав 1934г. – уже 67% [9; 10].

Таблица 3.3. Сравнение характеристик авиационных двигателей воздушного охлаждения в середине 1920-х и в начале 1930-х годов (на примере фирмы ПраттУитни, США)

Первым скоростным двухмоторным пассажирским самолетом стал Боинг 247 (рис. 3.6). Этот самолет, поднявшийся в воздух в 1933 г., ознаменовал собой новый этап в развитии пассажирской авиации. Металлическая конструкция, обтекаемый монококовый и фюзеляж, низкорасположенное крыло с гладкой дюралюминиевой обшивкой, два установленных на крыле двигателя с кольцевидными капотами, убирающееся шасси, наплывы в месте соединения крыла с фюзеляжем – все эти особенности стали типичными для самолетов транспортной авиации на несколько десятилетий. Боинг 247 брал на борт 10 пассажиров, двух пилотов и стюарда. Мощность силовой установки (Пратт-Уитни "Уосп", 2x525 л.с.) была достаточна для продолжения полета на высоте до 3 км при отказе одного из моторов.

Рис-3.6. Двухмоторный пассажирский самолет Боинг 247

В 1934 г. самолет усовершенствовали (модификация B-247D). Кольца Тауненда на двигателях заменили на капоты ЧАСА, улучшились обводы фонаря кабины пилотов. Но главное, на самолете установили винты изменяемого в полете шага. Это новшество дало заметное улучшение летных характеристик.

Большое внимание при создании самолета фирма Боинг уделила обеспечению комфорта для пассажиров в полете. Для уменьшения шума от двигателей стенки пассажирской кабины были сделаны двойными, расстояние между ними составляло 15 мм, внутренняя фанерная стенка была обита войлоком с обеих сторон. Система отопления позволяла поддерживать в салоне самолета постоянную температуру 20°. имелась также вентиляция [10].

Единственным недостатком самолета являлось отсутствие посадочной механизации. Конструкторы не извлекли урока из опыта испытаний одномоторного "Мономейла" – прототипа В-247. Из-за ограничений по Vnoc нагрузка на крыло у В-247 была меньше, чем у других скоростных пассажирских машин, и по скорости Боинг 247D уступал другим двухмоторным авиалайнерам-экспрессам. В этом отношении фирма Боинг проявила консерватизм, который ей дорого обошелся: в скором времени модель 247 была вытеснена более совершенными пассажирскими самолетами. Всего в эксплуатацию поступило 75 экземпляров Боинг 247.

Первым самолетом, в конструкции которого нашли воплощение все описанные в предшествующей главе усовершенствования, стал двухдвигательный Локхид "Электра" (1934 г.). Благодаря посадочным закрылкам на крыле, удельная нагрузка на площадь у этого самолета достигала 110 кг/м² – на 30 кг больше, чем у Боинг 247. В результате, при равной с "Боингом" энерговооруженности, он имел на 32 км/ч большую максимальную скорость. Правда, меньшая по размерам "Электра" (рис. 3.7) брала на борт только 8 пассажиров, поэтому часовая производительность обоих самолетов была приблизительно одинаковой.

Пример с "Электрой" убедительно продемонстрировал важность применения посадочной механизации для улучшения скоростных качеств. С середины 30-х годов посадочные щитки или закрылки становятся обязательной частью конструкции многомоторных самолетов.

Конструктивной особенностью "Электры", повторенной потом на многих самолетах, было двухкилевое вертикальное оперение. Расположение килей по краям горизонтального стабилизатора объясняется стремлением конструкторов вынести их в зону обдувки от пропеллера и повысить этим эффективность вертикального оперения.

Рис.3.7. Локхид "Электра"

Создание скоростных двухмоторных транспортных самолетов в Европе началось с Германии. К середине 30-х годов в руководстве страны уже сформировались агрессивные политические планы, и пришедшему к власти Гитлеру требовалась современная военная техника. Понимая, что многомоторные скоростные пассажирские самолеты при необходимости могут быть переделаны в бомбардировщики, правительство всячески поддерживало создание таких машин.

В конце 1934 г.фирма Юнкерс выпустила десятиместный Ju-86,способный развивать скорость до 340 км/ч. Так же как Локхид "Электра»", он воплощал в себе все новейшие технические достижения – монококовый фюзеляж, убираемое шасси, закрылки, винты изменяемого шага, двухкилевое оперение [10, с. 121 -124]. Гражданское применение самолета имело ограниченные масштабы. В 1935 г. Ju-86 переделали в бомбардировщик, и в атом варианте он строился в большом количестве.

Та же судьба постигла и самолет Хейнкель Нe-111. Появившийся в 1935 г. как двухмоторный пассажирский экспресс, он в скором времени стал одним из самых известных бомбардировщиков немецких ВВС. Э. Хейнкель вспоминал:" Добившись значительных успехов благодаря моему "Хе-70", "Люфтганза" решила оснастить свой самолетный парк скоростными пассажирскими машинами. Практика показала, что многомоторные самолеты надежнее одномоторных и не уступают им в скорости. Мне предложили создать экспериментальный образец пассажирского самолета, способного перевозить, помимо экипажа, десять человек. Количество моторов не оговаривалось, но ставилось условие, что при выходе из строя одного двигателя самолет должен долететь до места назначения.

…Приступая к проектированию нового пассажирского самолета "Хе-111", я заявил своим сотрудникам: "Создавая двухмоторный самолет, мы идем на значительный риск. Но мы должны доказать всему миру, что средний мотор для безопасности не нужен, а его присутствие есть ни что иное, как недостаток. Он забирает полезный объем в фюзеляже и утяжеляет самолет".

Мы придали крылу и оперению эллиптическую форму. Уделили большое внимание местам, где крыло стыковалось с фюзеляжем. Добились везде гладкой обшивки и сделали убирающимся шасси. В принципе "Хе-111" был продолжением совершенствования конструкции "Хе-70", но уже выполненным целиком из металла.

…Мог ли я тогда знать, что даю путевку в жизнь не гражданскому самолету, а одному из самых массовых немецких бомбардировщиков второй мировой войны? "[8.с. 119-120].

В отличие от других конструкторов пассажирских самолетов Хейнкель применял на своих машинах двигатели водяного охлаждения. С двумя BMW-6 мощностью по 660 л.с. Не-111 имел крейсерскую скорость полета около 350 км/ч, а максимальная скорость превышала 400 км/ч.

Итак, первые пассажирские двухмоторные самолеты 30-х годов представляли собой 10-местные машины с крейсерской скоростью полета 300-350 км/ч. По этому параметру они в полтора раза превосходили многомоторные гражданские самолеты предшествующего десятилетия, однако по-прежнему уступали им в отношении числа пассажиров: узкий цилиндрический фюзеляж обеспечивал малое аэродинамическое сопротивление, но внутренний объем его был невелик. По этой причине часовая производительность Боинга выпуска 1933 г. не сильно отличалась от производительности пассажирского трехмоторного самолета 20-х годов (см. табл. 3.2). Для достижения решительного экономического превосходства необходимо было значительно увеличить количество пассажирских мест.

В 1933 г. фирма Дуглас по заданию американской авиакомпании TWA занялась проектированием самолета, который, имея высокую скорость полета, по пассажировместимости не уступал бы трехмоторным транспортным самолетам. Так появился двухмоторный Дуглас DC-1, способный перевозить 12 пассажиров с крейсерской скоростью 315 км/ч на расстояние до 1000 км. На самолете были установлены новейшие авиамоторы воздушного охлаждения Райт "Циклон" мощностью по 710 л.с. каждый. Основным его соперником был Боинг 247. В сборочном цехе завода Дугласа в Санта Монике висел огромный чертеж "247-го" и, рядом, плакат: "Не копируй его! Сделай лучше!" [11, с. 161]. И инженеры фирмы Дуглас действительно сделали лучше. По сравнению с В-247, DC-1 имел больше пассажирских мест, на крыле были установлены щелевые закрылки, обеспечивающие ту же посадочную скорость при большей нагрузке на крыло.

За опытным DC-1, первый полет которого состоялся 1 июля 1933 г., последовал Дуглас DC-2 с новым фюзеляжем, вмещавшим 14 пассажиров. При изготовлении крыла Дуглас использовала метод проектирования подкрепленных оболочечных конструкций, разработанный Д. Нортропом при создании самолета "Альфа" [3, с. 64]. Многолонжеронное дюралевое крыло DC-2 и последующих конструкций фирмы Дуглас обладало высокой усталостной прочностью. Это способствовало долговечности самолетов с маркой DC. Новые мощные двигатели с винтами изменяемого шага помимо высокой рейсовой скорости обеспечивали хорошие взлетные характеристики. В случае отказа одного мотора самолет мог продолжать полет на высоте более трех с половиной километров, что делало более безопасной эксплуатацию в горных районах.

Свои отличные летные и эксплуатационные характеристики DC-2 продемонстрировал во время воздушных гонок Лондон – Мельбурн в октябре 1934 г. Пассажирский "Дуглас" занял на этих состязаниях второе место,


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: