Определение напряжений при растяжении-сжатии

Растяжением или сжатием будем называть такое нагружение стержня, когда в поперечных сечениях возникает лишь один внутренний силовой фактор - нормальная сила.

Рис.2.1

Для определения продольных сил используем метод сечений. Проведем сечение а-а и спроектируем все силы, действующие на нижнею часть сечения, на ось стержня. Приравнивая сумму проекции к нулю, найдем:

N1=-3F

Минус показывает, что действует сжатие.

На участке А-В (в сечении в-в):

N2=5F

Наглядное представление о законе изменения продольных сил по длине дает эпюра продольных сил.


Если на поверхности призматического стержня нанести прямоугольную сетку, то после деформации линии останутся взаимно перпендикулярными.

Рис. 2.2

Все горизонтальные линии (c-d) переместятся вниз, оставаясь горизонтальными и прямыми. Можно предположить, что внутри стержня будет такая же картина. Это гипотеза Бернули или гипотеза плоских сечений: «Плоское сечение, перпендикулярное оси стержня после деформирования остается плоским и перпендикулярным оси сечения».

На этом основании считаем, что поперечная сила равномерно распределена по сечению.

  Эта гипотеза справедлива, в первую очередь, для стержневых конструкций.

Интенсивность поперечной силы - нормальное напряжение:

Читайте также:

Напряженное состояние при растяжении-сжатии и закон парности касательных напряжений

Изучение законов броуновского движения и определение размеров взвешенных частиц

Измерение коэффициента диффузии паров легко испаряющейся жидкости в воздухе

Определение коэффициента внутреннего трения методом Стокса

Определение коэффициента теплопроводности металлов

Вернуться в оглавление: Физика


double arrow
Сейчас читают про: