Проблемы детерминизма в истории науки

Детерминизм - методологический принцип, согласно которому из факта, что в мире все взаимосвязано и причинно обусловлено, следует возможность познания и предсказания событий, имеющих как однозначно определенную, так и вероятностную природу. Механический детерминизм - однозначная причинная обусловленность - абсолютное строгое предсказание. Индетерминизм - методологическая позиция, в которой отрицается как объективность причинных связей, так и ценность причинных объяснений в науке. Г. Риккерт: "Причинное объясняет действительно лишь в пределах наук о природе и неприменимо к наукам о духе, т.е. наукам общественным".

Поскольку причины того или иного явления не всегда удается установить, а механицизм так же не всегда может объяснить разнообразные явления, в XIX веке господствующее положение приобрело философское учение под названием "детерминизм". Различие между учением о причинности и детерминизмом отмечал еще Декарт: "Следствие отстает во времени от причины из-за ограниченности чувственных восприятий человека". Суть детерминизма проще всего объяснить с помощью аналогии. Если аксиомы Евклидовой геометрии заданы, то свойства фигур в рамках этой геометрии полностью определены как необходимые логические следствия. Говорят, что Ньютон как-то спросил, зачем нужно выписывать теоремы Евклидовой геометрии, если они очевидным образом следуют из аксиом. Все же большинству людей требуется немало времени, чтобы доказать каждую из теорем. Но хронологический порядок открытия новых геометрических свойств, который связывает аксиомы и теоремы, такой же временной последовательностью, как причину и следствие, в действительности иллюзорен.

Так же обстоит дело и с физическими явлениями, считал Декарт. Для "божественного разума" все явления "существуют" в одной математической структуре. Но наши чувства в силу ограниченности их возможностей распознают явления не одновременно, а одно за другим, и поэтому мы одни явления принимаем за причины других. Отсюда понятно, считал Декарт, почему математика позволяет предсказывать будущее. Это становится возможным благодаря ранее полученным соотношениям. Именно математическое соотношение дает самое ясное физическое объяснение реальности. Кратко можно сказать, что реальный мир - это совокупность математически представимых движений объектов в пространстве и времени, а Вселенная в целом - огромная гармоничная машина, построенная на основе математических законов. Кроме того, многие философы, включая самого Декарта, утверждали, что математические законы заданы раз и навсегда, поскольку так сотворил мир Сам Бог, а Божья Воля неизменна, независимо от того, удалось ли человеку проникнуть в сокровенные "замыслы Бога", мир функционировал по закону, и закономерность процессов, происходящих в природе, не ставилась никем под сомнение, по крайней мере до начала XIX в.

Естественно научная концепция детерминизма наиболее четко выражена функциональными соотношениями между переменными, но из функционального соотношения не следует существования причинно следственной связи.

Многое из того, чем занимаются точные науки, сводится к установлению функциональных соотношений между переменными. Если такого рода соотношение оказывается верным в широких пределах и выражает нечто важное относительно физического мира, то оно обретает статус закона природы.

Однако еще Дж. Максвелл указывал на существование ситуаций (которые он называл особыми точками), в которых поведение механической системы становится нестабильным, как, например, камень на вершине горы может вдруг сорваться, вызывая лавину. Максвелл предостерегал своих ученых коллег от недооценки роли таких ситуаций и считал, что если изучение особых точек сменит непрерывность и стабильность вещей, то успехи естествознания, возможно, позволят устранить предрасположение к детерминизму.

3. Научная революция XVI-XVII вв.
см. вопросы 8-9 части 1

4. Революции в науке
Революция в науке — период развития науки, во время которого старые научные представления замещаются частично или полностью новыми, появляются новые теоретические предпосылки, методы, материальные средства, оценки и интерпретации, плохо или полностью несовместимые со старыми представлениями.

Так, отрезок времени примерно от даты публикации работы Николая Коперника «Об обращениях небесных сфер» (De Revolutionibus), то есть с 1543 г., до деятельности Исаака Ньютона, сочинение которого «Математические начала натуральной философии» было опубликовано в 1687 году, обычно называют периодом «научной революции».[1]

Содержание «научной революции» любого периода заключается в том, что ученые делают научные открытия в различных областях наук, то есть устанавливают «неизвестные ранее объективно существующие закономерности, свойства и явления материального мира, вносящие коренные изменения в уровень познания».

Первая научная революция XVII века

Связана с именами: Коперника, Галилея, Кеплера, Ньютона.

· Коперник (1473—1543): наиболее известен как автор гелиоцентрической системы мира, положившей начало первой научной революции.

· Галилей (1564—1642): изучал проблему движения, открыл принцип инерции, закон свободного падения тел; сделал ряд астрономических открытий с помощью телескопа.

· Кеплер (1571—1630): установил три закона движения планет вокруг Солнца, создал первую механистическую теорию движения планет, внес существенный вклад в развитие геометрической оптики.

· Ньютон (1643—1727): сформулировал понятия и законы классической механики, математически сформулировал закон всемирного тяготения, теоретически обосновал законы Кеплера о движении планет вокруг Солнца, создал небесную механику (Закон всемирного тяготения был незыблем до конца 19 в.), создал дифференциальное и интегральное исчисление как язык математического описания физической реальности, автор многих новых физических представлений (о сочетании корпускулярных и волновых представлений о природе света и т. д.), разработал новую парадигму исследования природы (метод принципов)— мысль и опыт, теория и эксперимент развиваются в единстве, разработал классическую механику как систему знаний о механическом движении тел, механика стала эталоном научной теории, сформулировал основные идеи, понятия, принципы механической картины мира.

Механическая картина мира дала естественно-научное понимание многих явлений природы, освободив их от мифологических и религиозных схоластических толкований. Её недостаток — исключение эволюции, пространство и время не связаны. Экспансия механической картины мира на новые области исследования (химия, биология, знания о человеке и обществе). Синонимом понятия науки стало понятие механики. Однако накапливались факты, не согласовывающиеся с механистической картиной мира и к середине 19 в. она утратила статус общенаучной.

Джероламо Кардано внёс значительный вклад в развитие алгебры, Франсуа Виет основоположник символической алгебры, Рене Декарт и Пьер Ферма внесли свой вклад в развитие математики.

Вторая научная революция конца XVIII века — 1-я половина XIX века

· Переход от классической науки, ориентированной на изучение механических и физических явлений, к дисциплинарно организованной науке

· Появление дисциплинарных наук и их специфических объектов

· Механистическая картина мира перестает быть общемировоззренческой

· Возникает идея развития (биология, геология)

· Постепенный отказ эксплицировать любые научные теории в механистических терминах

· Начало возникновения парадигмы неклассической науки

· Максвелл и Больцман признавали принципиальную допустимость множества теоретических интерпретаций в физике, выражали сомнение в незыблемости законов мышления, их историчности

Третья научная революция конец XIX века — середина XX века

· Фарадей — понятия электромагнитного поля

· Максвелл — электродинамика, статистическая физика

· Материя — и как вещество и как электромагнитное поле

· Электромагнитная картина мира, законы мироздания — законы электродинамики

· Лайель — о медленном непрерывном изменении земной поверхности

· Ламарк — целостная концепция эволюции живой природы

· Шлейден, Шванн — теория клетки — о единстве происхождения и развития всего живого

· Майер, Джоуль, Ленц — закон сохранения и превращения энергии — теплота, свет, электричество, магнетизм и т. д. переходят одна в другую и являются формами одного явления, эта энергия не возникает из ничего и не исчезает.

· Дарвин — материальные факторы и причины эволюции — наследственность и изменчивость

· Беккерель — радиоактивность

· Рентген — Лучи

· Томсон — элементарная частица электрон

· Резерфорд — планетарная модель атома

· Планк — квант действия и закон излучения

· Бор — квантовая модель атома Резерфорда-Бора

· Эйнштейн — общая теория относительности — связь между пространством и временем

· Бройль — все материальные микрообъекты обладают как корпускулярными, так и волновыми свойствами (квантовая механика)

· Зависимость знания от применяемых исследователем методов

· Расширение идеи единства природы — попытка построить единую теорию всех взаимодействий

· Принцип дополнительности — необходимость применять взаимоисключающие наборы классических понятий (например, частиц и волн), только совокупность взаимоисключающих понятий дает исчерпывающую информацию о явлениях. Это совершенно новый метод мышления, диктующий необходимость освобождения от традиционных методологических ограничений

· Появление неклассического естествознания и соответствующего типа рациональности

· Мышление изучает не объект, а то, как явилось наблюдателю взаимодействие объекта с прибором

· Научное знание характеризует не действительность как она есть, а сконструированную чувствами и рассудком исследователя реальность

· Допущение истинности нескольких отличных друг от друга теорий одного и того же объекта

· Относительная истинность теорий и картины природы, условность научного знания.

5. Развитие научных представлений об уровнях организации материи и их взаимосвязи, редукционизм, холизм

Холизм

Холи́зм (от др.-греч. ὅλος, «целый, цельный») — в широком смысле — позиция в философии и науке по проблеме соотношения части и целого, исходящая из качественного своеобразия и приоритета целого по отношению к его частям[1].

В узком смысле под холизмом понимают «философию целостности», разработанную южноафриканским философом Я. Смэтсом, который ввёл в философскую речь термин «холизм» в 1926 году, опираясь на слова из «Метафизики» Аристотеля «целое больше, чем сумма его частей».

Онтологический принцип холизма гласит: целое всегда есть нечто большее, чем простая сумма его частей. С холистической позиции, весь мир — это единое целое, а выделяемые нами отдельные явления и объекты имеют смысл только как часть общности. В связи с этим, многими холистическими мыслителями религиозной и трансцендентальной ориентации делался вывод, что развитие мира должна направлять некая внешняя по отношению к нему сила, хотя, например, такой выраженный имманентист, как Г.Гегель, тоже был последовательным холистом.

В гносеологии холизм опирается на принцип: познание целого должно предшествовать познанию его частей.

Холизм господствовал в европейской философской мысли с древности до XVII столетия. Пример холистического утверждения из трудов Гиппократа: «человек есть универсальная и единая часть от окружающего мира», или же «микрокосм в макрокосме». Представитель классического немецкого идеализма Г.В.Ф.Гегель говорил: «только целое имеет смысл».

Однако с развитием в XVII-XIX веках науки и распространением в философии и естествознании механистических и редукционистских идей возобладал взгляд на любую систему как на производное частей, и окрепло убеждение, что свойства любого объекта могут быть выведены из анализа его составляющих элементов. Соответственно, холистический принцип стал воприниматься как не имеющая практической ценности философская концепция и оказался оттеснённым на перифирию общественного сознания.

Интерес к идеям холизма снова возрос в XX веке в связи с кризисом классической картины мира и расцветом герменевтики. Собственно, в это время и появился термин — в «философии целостности» Я. Смэтса.

Редукционизм

Редукционизм (от лат. reductio — возвращение, приведение обратно) — методологический принцип, согласно которому сложные явления могут быть полностью объяснены с помощью законов, свойственных явлениям более простым (например, социологические явления объясняются биологическими или экономическими законами).

Редукционизм абсолютизирует принцип редукции (сведения сложного к простому и высшего к низшему), игнорируя появление эмергентных свойств в системах более высоких уровней организации. Хотя как таковая, обоснованная редукция может быть плодотворной (пример — планетарная модель атома).

Редукционизм как философский подход исторически потеснил холизм — систему взглядов, не выделяемую в тот период отдельно, но господствовавшую в европейском мышлении до XVII века. Первым последовательным выразителем редукционистского подхода к миру, продолжившим в Новое Время традицию античного философа Демокрита, был Рене Декарт (1596—1650). Вот пример его рассуждений: «…смерть никогда не наступает по вине души, но исключительно потому, что разрушается какая-либо из главных частей тела. … тело живого человека так же отличается от тела мертвого, как отличаются часы или иной автомат (то есть машина, которая движется сама собой), когда они собраны и когда в них есть материальное условие тех движений, для которых они предназначены… от тех же часов или той же машины, когда они сломаны и когда условие их движения отсутствует».

В современной западной философии редукционизм вновь уступил свои позиции холизму, понятие которого было на новом уровне введено в оборот Я. Смэтсом (1870—1950)[1]. Он процитировал слова из «Метафизики» Аристотеля «целое больше, чем сумма его частей».


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: