Опишите водоводяной реактор, тяжеловодный реактор, графито-водный и графито-газовый реакторы

водоводяной реактор

Водо-водяные энергетические реакторы получили наибольшее распространение из-за своей компактности и относительно простой и надежной конструкции. В настоящее время на АЭС применяют реак­торы ВВЭР-440 и ВВЭР-1000.

Тепловая схема блока — двухконтурная. Обычная некипящая вода, используемая в качестве тепло­носителя и замедлителя, циркулирует под давлением 7—16 Мпа. Для повышения надежности и безопасности работы АЭС тепло-отвод от активной зоны реактора выполняют в виде нескольких независимых циркуляционных петель. Например, первый радио­активный контур реактора ВВЭР-440 имеет шесть петель. Увеличе­ние числа циркуляционных петель усложняет конструкцию, техно­логическую схему и создает трудности в эксплуатации, следователь­но, увеличиваются капитальные вложения в установку. Более пер­спективной является четырехпетлевая схема охлаждения реактора ВВЭР-1000.

2-ой контур выполняется аналогично технологич. схеме ТЭС. Так же реактор имеет следующие вспомогательные системы: 1)сист.управл.и защитой реаткора. 2)борного регулирования. 3)аварийного расхолаживания реактора. 4)система дегазации теплоносителя и снижение взрывоопасной концентрации водорода. 5)система компенсации температурных изменений объема. 6)система охлаждения бассейна перегрузки и выдержки.

тяжеловодный реактор

Тяжелово́дный я́дерный реа́ктор (англ. Pressurised Heavy Water Reactor (PHWR)) — ядерный реактор, который в качестве теплоносителя и замедлителя использует D2O — тяжёлую воду. Так как дейтерий имеет меньшее сечение поглощения нейтронов, чем лёгкий водород, такие реакторы имеют улучшенный нейтронный баланс (то есть для них требуется менее обогащённый уран), что позволяет использовать в качестве топлива природный уран в энергетических реакторах или использовать «лишние» нейтроны для наработки изотопов. В энергетических реакторах использование природного урана значительно снижает расходы на топливо, хотя экономический эффект несколько сглаживается большей ценой энергоблока и теплоносителя. Наиболее известным реактором этого типа является канадский CANDU. Помимо самой Канады, реакторы CANDU экспортировались в Китай, Южную Корею, Индию, Румынию, Аргентину и Пакистан. Крупномасштабная программа строительства тяжеловодных реакторов en:PHWR осуществляется в Индии. Всего в мире на данный момент действует 40 энергетических реакторов на тяжёлой воде, 9 строятся.

Промышленные тяжеловодные реакторы широко использовались для производства трития и плутония, а также для производства широкого спектра изотопной продукции, в том числе и медицинского назначения.


графито-водный

1-турбина, 2-барабаны сепараторы, 3-реактор, 4-конденсатор, 5-деаэратор, 6-циркуляционный насос,7-конденсационный насос. МПЦ-контур многократной принудительной циркуляции(включает в себя 2 петли каждый из которых имеет 2 барабана сепаратора и 4 цирк.насоса(3-раб.1-запасной).

Для аварийных режимов применяют аварийные питательные электронасосы (ПЭН), использующие запасы воды деаэраторов и дополнительных баков обессоленной воды. Для обеспечения тепло­вой энергией потребителей поселка и станции применяют дополни­тельный промежуточный контур, состоящий из подогревателей и на­сосов, так как турбина работает на радиоактивном паре. Следова­тельно, схема АЭС с реакторами РБМК является одноконтурной. Для исключения про­течек радиоактивной воды вдоль вала насоса используют специаль­ный контур, через который подают запирающую воду давлением на 0,25 МПа выше давления на всасе ГЦН. Так как ГЦН не могут работать без запирающей воды, насосы этого контура должны под­ключаться к схемам надежного питания. При потере же питания в системе СН станции вода на уплотнение ГЦН подается из аварий­ного гидроаккумулятора в течение 10 мин, пока не вступят в ра­боту аварийные дизельгенераторы этих схем. К вспомогательным относятся системы: управления и защиты реактора (СУЗ); продувки и расхолаживания; охлажде­ния бассейна; спринклерноохладительная и аварийного охлаждения (САОР).

Графи́то-га́зовый я́дерный реа́ктор (ГГР) — корпусной ядерный реактор, в котором замедлителем служит графит, теплоносителем — газ (гелий, углекислый газ и пр.). По сравнению с ВВР и ГВР, реакторы с газовым теплоносителем наиболее безопасны. Это объясняется тем, что газ практически не поглощает нейтроны, поэтому изменение содержания газа в реакторе не влияет на реактивность.

В Великобритании работает несколько АЭС с ГГР, тепло от которых отводится углекислым газом. ОболочкиТВЭЛов и каналы в ГГР изготовляют из сплавов магния, слабо поглощающих нейтроны. Это позволяет использовать в качестве ядерного топлива природный и слабообогащённый уран. Углекислый газ прокачивают через реактор под давлением 10—20 атм. Его температура на выходе – около 400 °C. Удельная мощность реактора составляет всего 0,3—0,5 кВт/кг, то есть примерно в 100 раз меньше, чем в ВВР и ГВР. В усовершенствованных ГГР оболочки из сплава магния заменены оболочками из нержавеющей стали, а природный уран — двуокисью обогащённого урана. Такие изменения в конструкции ТВЭЛа позволили повысить температуру углекислого газа на выходе до 690 °C, удельную мощность – примерно в 3,5 раза, аКПД АЭС — до 40 %.



Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: