Дозы. Единицы их измерений

Результат радиационного воздействия зависит от целого ряда факторов: количества радиоактивности во внешней среде и внутри организма, вида излучения и его энергии при распаде ядер радиоактивных изотопов, накопления радиоактивных веществ в организме и их выведении и др. Наибольшее значение при этом имеет количество поглощенной энергии излучения в расс-матриваемой массе вещества. В результате взаимодействия радиоактивного излучения со средой, включая биологические объекты, происходит передача ей определенной величины энергии излучения, которая затрачивается на процессы ионизации и возбуждения атомов и молекул среды. Часть излучения проходит через среду свободно, без поглощения, не оказывая на нее действия. Поэтому существует прямая зависимость между действием излучения и величиной поглощенной энергии. Это определяет дозу излучения.

Под дозой понимают меру действия ионизирующего излучения в опреде-ленной среде.

Доза – величина энергии излучения переданная веществу и рассчитанная на единицу массы или объема вещества.

С увеличением времени облучения объекта величина дозы увеличивается.

Для измерения количества поглощенной энергии необходимо подсчитать число пар ионов, образующихся под действием ионизирующего излучения. В связи с этим для количественной характеристики рентгеновского и гамма-излучений, действующих на объект, было введено понятие «экспозиционная доза».

Экспозиционная доза (Х) – доза, которая характеризует ионизационную способность рентгеновского или гамма-излучения (фотонного излучения) в воздухе при энергии квантов не более 3 МэВ. Ее еще называют физической.

Экспозиционная доза представляет собой отношение суммарного заряда dQ всех ионов одного знака, созданных в воздухе, когда все электроны и позитроны, освобожденные фотонами в элементарном объеме воздуха с массой dm, полностью остановились в воздухе, к массе воздуха в указанном объеме:

Х = dQ/dm.

Экспозиционную дозу используют для оценки радиационной обстановки на местности, в рабочем или жилом помещении, обусловленной действием рентгеновского или гамма-излучения, а также для определения степени защит-ных свойств материалов экранов.

За единицу экспозиционной дозы в Международной системе единиц (СИ) принят кулон на килограмм (Кл/кг).

Кулон на килограмм это такая экспозиционная доза рентгеновского или гамма-излучения, при которой сопряженная корпускулярная эмиссия (все электроны и позитроны, освобожденные фотонами) в объеме воздуха массой 1 кг производит ионы, несущие электрический заряд один кулон (Кл) каждого знака (+ и -).

С 1.01.1990 г. должны были быть изъяты из употребления внесистемные единицы, выражающие дозу и активность (Р, Рад, Бэр, Ки и др.). Однако они все еще употребляются, что объясняется, в частности, использованием на практике парка дозиметрических и радиометрических приборов, имеющих градуировку регистрирующих устройств во внесистемных единицах измерения.

Внесистемной единицей измерения экспозиционной дозы является рентген (Р). Эта единица принята в обращении с 1928 года.

Рентген – экспозиционная доза рентгеновского или гамма-излучения, при которой в 1 см3 (0,001293 г) воздуха при нормальных условиях (температура 0о С и давление 760 мм рт. ст.) образуется 2,08·109 пар ионов. Или рентген – экспозиционная доза рентгеновского или гамма-излучения, при которой сопряженная корпускулярная эмиссия в 1 см3 воздуха при нормальных условиях создает ионы, несущие заряд в одну электростатическую единицу электричества каждого знака.

1 Р = 2,58·10 -4 Кл/кг; 1 Кл/кг = 3,88·10 3 Р

Экспозиционную дозу в 1 рентген создает гамма-излучение источника радия с активностью 1 Ки на расстоянии 1 метр за 1 час.

Производные единицы рентгена: килорентген (1 кР = 10 3 Р), миллирент-ген (1 мР = 10-3 Р), микрорентген (1 мкР = 10-6 Р).

Для корпускулярного ионизирующего излучения (альфа- и бета-частицы, нейтроны) была предложена внесистемная единица – физический эквивалент рентгена (фэр), при которой в воздухе образуется столько же пар ионов как и при экспозиционной дозе рентгеновского или гамма-излучения в 1 Р. Единица фэр не получила практического применения и в настоящее время не исполь-зуется. Для характеристики полей излучения лучше использовать плотность потока частиц (в том числе и фотонов) и интенсивность излучения (плотность потока энергии).

Экспозиционная доза неприемлема к корпускулярным видам излучения (альфа- и бета-частицам и др.), ограничена областью энергии квантов до 3 МэВ и отражает лишь меру количества фотонного излучения. Она не отражает коли-чество энергии излучения, поглощенной объектом облучения. В тоже время очень важно для оценки радиационного воздействия знать количество энергии излучения, которое поглотилось объектом. Для определения меры поглощенной энергии любого вида излучения в среде было введено понятие «поглощенная доза». По величине поглощенной дозы, зная атомный состав вещества, энергию излучения, можно рассчитать поглощенную дозу рентгеновского и гамма-излучения в любом веществе. Энергетический эквивалент рентгена равен 88 эрг/г (энергия, затраченная на образование 2,08·109 пар ионов).

Поглощенная доза (D) – величина энергии ионизирующего излучения, переданная веществу:

D = de/dm,

где de – средняя энергия, переданная ионизирующим излучением вещест-ву, находящемуся в элементарном объеме, dm – масса вещества в этом объеме.

Или поглощенная доза – количество энергии любого вида ионизирующего излучения, поглощенное в определенном органе или ткани и рассчитанное на единицу массы.

Если обозначить энергию которая падает на объект значением Е, а энергию, прошедшую через объект – Е1, то ∆Е будет поглощенной энергией:

∆Е = Е - Е1.

Вместо термина «поглощенная доза излучения» допускается применение сокращенной формы «доза излучения».

Единицей измерения поглощенной дозы в Международной системе единиц является джоуль на килограмм (Дж/кг).

Джоуль на килограмм – такая единица поглощенной дозы, при которой в 1 кг массы облученного вещества любым видом ионизирующего излучения поглощается энергия в 1 джоуль.

Эта единица по другому получила название грей (Гр).

Грей – единица, как и внесистемная единица рентген, является эпоними-ческой, то есть, образована от имени ученого. Луи Гарольд Грей – английский радиобиолог, который занимался вопросами связи между физическими и биологическими эффектами излучения и внес большой вклад в развитие радиа-ционной дозиметрии.

Грей равен поглощенной дозе излучения, при которой веществу массой 1 кг передается энергия ионизирующего излучения равная 1 Дж (1 Гр = 1 дж/кг).

Используются и производные единицы от грея: мкГр, мГр и др.

С 1953 года была введена внесистемная единица поглощенной дозы – рад (от англ. radiation absorbed dose – поглощенная доза излучения), которая еще широко используется на практике в настоящее время.

Рад – поглощенная доза любого вида ионизирующего излучения, при которой в 1 г вещества поглощается энергия излучения равная 100 эрг.

1 рад = 100 эрг/г = 10-2 дж/кг; 100 рад = 1 Гр.

Применяются дольные и кратные единицы рада: килорад (1 крад = 103 рад), миллирад (1 мрад = 10-3 рад), микрорад (1 мкрад = 10-6 рад).

Для расчета поглощенной дозы используют формулу:

D = Х·F,

где D – поглощенная доза, Х – экспозиционная доза, F – коэффициент переходный, устанавливаемый опытным путем на фантоме (для воды и мягкой ткани F равен 0,93 или ≈ 1).

В воздухе доза излучения в 1 рентген энергетически эквивалентна 88 эрг/г, поглощенная доза из определения равна 100 эрг/г, следовательно, поглощенная доза в воздухе составит 0,88 рад (88:100 = 0,88).

В условиях лучевого равновесия, при котором сумма энергий заряженных частиц, покидающих рассматриваемый объем, соответствует сумме энергий заряженных частиц, входящих в этот объем, можно установить энергетический эквивалент экспозиционной дозы.

Экспозиционной дозе в воздухе Х = 1 Р соответствует поглощенная доза D = 0,873 рад, а 1 Кл/кг = 33,85 Гр. В биологической ткани: 1 Р соответствует 0,96 рад и 1 Кл/кг соответствует 33,85 Гр. Таким образом, с небольшой погрешностью (до 5%) при равномерном облучении фотонным излучением поглощенная доза в биологической ткани совпадает с экспозиционной дозой, измеренной в рентгенах.

При облучении живых организмов возникают различные биологические эффекты, разница между которыми при одной и той же поглощенной дозе объясняется степенью опасности для организма разных видов излучения.

Принято сравнивать биологические эффекты, вызываемые любыми иони-зирующими излучениями, с эффектами от фотонного, то есть рентгеновского и гамма-излучения, а также пространственное распределение в облучаемом объекте поглощенной энергии. При одинаковой поглощенной дозе альфа-излучение гораздо опаснее бета- или гамма-излучения. Для учета этого явления введено понятие «эквивалентная доза».

Эквивалентная доза ‌ (Н)‌ – поглощенная доза в органе или ткани, умно-женная на соответствующий взвешивающий коэффициент для данного вида излучения (WR):

НTR = DTR·WR,

где DTR – средняя поглощенная доза в органе или ткани Т, WR – взвешивающий коэффициент для излучения R.

При воздействии на объект различных видов излучения с различными взвешивающими коэффициентами эквивалентная доза определяется как сумма эквивалентных доз для этих видов излучения.

Эквивалентная доза является основной величиной, определяющей уро-вень радиационной опасности при хроническом облучении человека и живот-ных в малых дозах.

В международной системе единиц (СИ) за единицу эквивалентной дозы принят зиверт (Зв). Единица зиверт предназначена только для использования в области радиационной безопасности.

Эта единица измерения эквивалентной дозы получила название в честь шведского ученого Рольфа Зиверта, который занимался исследованиями в области дозиметрии и радиационной безопасности.

Зиверт – эквивалентная доза любого вида излучения, поглощенная 1 кг биологической ткани и создающая такой же биологический эффект как и поглощенная доза в 1 Гр фотонного излучения.

Внесистемной единицей измерения эквивалентной дозы является бэр (аббревиатура – биологический эквивалент рентгена).

Бэр – эквивалентная доза любого вида ионизирующего излучения, при которой в биологической ткани создается такой же биологический эффект, как и при дозе рентгеновского или гамма-излучения в 1 рентген.

1 бэр = 1·10-2 Дж/кг;

100 бэр = 1 Зв.

Взвешивающие коэффициенты для отдельных видов излучения при расчете эквивалентной дозы (WR) – используемые в радиационной защите множители поглощенной дозы, учитывающие относительную эффективность различных видов излучения в индуцировании биологических эффектов. Ранее с этой целью использовали коэффициент качества (Q) или относительной биологической эффективности (ОБЭ).

Коэффициент качества излучения предназначен для учета влияния микрораспределения поглощенной энергии на степень проявления вредного биологического эффекта и выбирается на основе имеющихся значений коэф-фициента ОБЭ.

Коэффициент ОБЭ, или (Q) показывает, во сколько раз эффективность биологического действия данного вида излучения больше, чем рентгеновского или гамма-излучения при одинаковой поглощенной дозе в тканях. Чем выше удельная ионизация, тем больше значения коэффициента ОБЭ, или (Q).

Взвешивающие коэффициенты (WR) для отдельных видов излучения:

Фотоны любых энергий (рентгеновское или гамма-излучение) ……1

Электроны (бета-частицы)……………………………………………..1

Альфа-частицы, осколки деления, тяжелые ядра …………….…… 20

Различают также следующие виды доз: эффективную, эффективную ожидаемую при внутреннем облучении, эффективную коллективную и эффективную годовую.

Доза эффективная (Е) – величина, используемая как мера риска возни-кновения отдаленных последствий облучения всего тела, и отдельных его орга-нов с учетом их радиочувствительности. Она представляет сумму произведений эквивалентной дозы в органе Н на соответствующий взвешивающий коэффициент для данного органа или ткани:

Е = ∑WТ·Н,

где Н – эквивалентная доза в ткани за время t, а WТ – взвешивающий коэффициент для ткани Т.

Таким образом, умножив эквивалентную дозу на соответствующие коэф-фициенты и просуммировав по всем органам и тканям, получим эффективную дозу.

Единица измерения эффективной дозы в СИ – зиверт (Зв).

Взвешивающие коэффициенты для тканей и органов при расчете эффективной дозы (WТ) – множители эквивалентной дозы в органах и тканях, используемые в радиационной защите для учета различной чувствительности разных органов и тканей в возникновении стохастических эффектов радиации:

Гонады…………………………………….0,20

Костный мозг (красный)………………....0,12

Легкие, желудок, толстый кишечник.…..0,12

Пищевод, печень………………………….0,05

Мочевой пузырь…………………………..0,05

Грудная железа……………………………0,05

Щитовидная железа………………………0,05

Кожа, клетки костных поверхностей…... 0,01

Остальные органы………………………...0,05

Доза эффективная ожидаемая при внутреннем облучении – доза за время, прошедшее после поступления радиоактивных веществ в организм.

Доза эффективная коллективная (S) – мера коллективного риска возникновения стохастических эффектов облучения. Она определяется как сумма индивидуальных эффективных доз, или величина, характеризующая полное воздействие излучения на группу людей: S = ∑Еn·N n,

где Еn – средняя эффективная доза на n-ю подгруппу группы людей; N n – число людей в подгруппе. Она измеряется в человеко-зивертах (чел.-Зв).

Доза эффективная (эквивалентная) годовая – сумма эффективной (эквивалентной) дозы внешнего облучения, полученной за календарный год, и ожидаемой эффективной (эквивалентной) дозы внутреннего облучения, обусловленной поступлением в организм радионуклидов за этот же год. Единица эффективной годовой дозы в СИ – зиверт (Зв).

Надо отметить, что существую и другие виды доз. Например, различают дозу в воздухе, на поверхности или в глубине облучаемого объекта, очаговую и интегральную дозы. Для оценки радиочувствительности и радиопоражаемости организма животных принято использовать термины – ЛД50/30 и ЛД100/30 – дозы облучения, которые вызывают смерть (гибель) соответственно 50% и 100% животных в течение 30 суток.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: