Змеевиковые теплообменники

Основным теплообменным эле­ментом является змеевик-труба, согнутая по определенному про­филю.

Конструкция змеевикового теплообменника показана на рис. 4. Аппарат имеет корпус 1, в котором размещен змеевик 3 или система змеевиков. Витки змеевика ориентированы по винтовой линии. При боль­шой площади поверхности теплообмена змеевики по длине набирают из нескольких секций. Во избежание прогибов труб при большом числе витков и большом диаметре навивки каждый виток закрепляют болтами на стойках.

Рис. 4 Змеевиковый теплообменник:

1- корпус

2- стакан

3- змеевик из трубы

Пар вводится в верхнюю часть корпуса через вход п1 со скоростью до 50 м/с, выходит снизу через выход п2. Охлаждающая жидкость пос­тупает в змеевик снизу через вход B1 и движется в нем со скоростью до [1]м/с, выходит через выход В2. Разность давлений теплоносителей в змееви-

ковых аппаратах может достигать 10 МПа.

Скорость движения жидкости мала вследствие большого сечения корпуса аппарата, что обусловливает низкие значения коэффициентов теплоотдачи от наружной стенки змеевика к жидкости (или наоборот). Для увеличе­ния этого коэффициента теплоотдачи повышают скорость движения жидкости путем установки в корпусе аппарата, внутри змеевика, стакана. В этом случае жидкость движется по кольцевому пространству между стенками аппарата и стакана с повышенной скоростью.

По­гружные змеевиковые теплообменники имеют сравнительно не­большую поверхность теплообмена (до 10-15 м2).
Спиральные теплообменники

Спиральные теплообменники изготовляют с поверхностью теплообмена 10—100 м2; они работают как под вакуумом, так и при давлении до 1 МПа при температуре рабочей среды 20—200 °С. Их можно использовать для реализации теплообмена между рабочими средами жидкость—жидкость, газ—газ, газ—жидкость.

Все большее распространение этих теплообменников в последнее время объясняется главным образом простотой изготовления и компактностью конструкции. В таком аппарате один из теплоносителей поступает в периферийный канал аппарата 3 и, двигаясь по спирали, выходит из верхнего центрального канала 1. Другой теплоноситель поступает в нижний центральный канал 4 и выходит из периферийного канала 2.

Площадь поперечного сечения каналов в таком теплообменнике по всей длине постоянна, поэтому он может работать с загрязненными жидкостями (загрязнение смывается потоком теплоносителя).
Рис.5 Спиральный теплообменник
В спиральных теплообменниках поверхность теплообмена образована двумя стальными лентами 1, 2 толщиной 3,5—6 мм и шириной 400—1250 мм (рис. 5), свернутыми в спираль так, что получаются каналы прямоугольного профиля, по которым противоточно движутся теплоносители. Достоинствами спиральных теплообменников являются повышенная ком­пактность (большая поверхность теплообмена в единице объема) при одинаковых коэффициентах теплопередачи и меньшее гидравлическое сопротивление для прохода теплоносителей, недостатками их являются сложность изготовления и меньшая плотность.
Оросительные теплообменники


Рис.5 Оросительный теплообменник

Оросительные теплообменники применяют в основном для охла­ждения жидкостей и газов или конденсации паров.

Оросительный теплообменник представляет собой змеевик (рис. 6) из разме­щенных друг над другом прямых труб 1, соединенных между собой калачами 2. Снаружи трубы орошают водой, которую подают в желоб 3 для равномерною распределения охлаждающей воды по всей длине верхней трубы змеевика. Отрабо­танная вода поступает в корыто 4 для сбора воды. По трубам протекает охлаждае­мый теплоноситель.

Орошающая теплообменник вода при перетекании по наружным стенкам труб частично испаряется. Но при этом происходит необратимая потеря воды. Во избежание сильного увлажнения воздуха в помещении ороситель­ные теплообменники обычно устанавливают на открытом воздухе. По этой же причине, если оросительный теплообменник необходи­мо установить в помещении, его приходится помещать в громозд­кие кожухи.

К недостаткам этих теплообменников следует отнести также гро­моздкость, неравномерность смачивания наружной поверхности труб, нижние ряды которых могут вообще не смачиваться и прак­тически не участвовать в теплообмене. Поэтому, несмотря на простоту изготовления, легкость чистки наружных стенок труб и другие достоинства, оросительные теплообменники находят огра­ниченное применение.
Теплообменники «труба в трубе»

Теплообменники типа «труба в трубе» представляют собой набор последова­тельно соединенных элементов, состоящих из двух концентрически расположенных труб (рис. 6).

Один теплоноситель движется по внутренним трубам 1, другой - по кольцевому зазору между внутренними и наружными 2 трубами. Внутренние трубы соединяются с помощью калачей 3, а наружные с помощью соединительных патрубков 4. Длина элемента теплообменника типа «труба в трубе» обычно состав­ляет 3-6 м, диаметр наружной трубы -76-159 мм, внутренней - 57-108 мм.

Рис. 6 Теплообменники типа «труба в трубе»
Поскольку сечения внутренней трубы и кольцевого зазора неве­лики, то в этих теплообменниках достигаются значительные скоро­сти движения теплоносителей (до 3 м/с), что приводит к увеличению коэффициентов теплопередачи и тепловых нагрузок, замедлению отложения накипи и загрязнений на стенках труб. Однако двухтруб­ные теплообменники более громоздки, чем кожухотрубчатые, на их изготовление требуется больше металла на единицу поверхности теплообмена. Двухтрубные теплообменники применяют для про­цессов со сравнительно небольшими тепловыми нагрузками и соот­ветственно малыми поверхностями теплообмена (не более десятков квадратных метров).

Теплообменники типа «труба в трубе» используют для охлаждения или нагревания в системе жидкость—жидкость, когда расходы теплоносителей невелики и последние не меняют своего агрегатного состояния.
Испарители и паропреобразователи

Испарители применяются для испарения жидкости или для увеличения концентрации раствора путем испа­рения части растворителя.

Испарители и парооб­разователи широко применя­ются для уменьшения и восполне­ния потерь конденсата. Их можно разделить на аппараты с естественной циркуляцией воды между труб­ками и с принудительной циркуляцией воды в кипятильных трубках.

Давление с испарителя выбирается таким образом, чтобы обеспечивать нужную температуру кипения. По­скольку испарители часто работают под вакуумом, то температура в них ниже нормальной температуры кипения.

В испарителях, в которых жидкость движется снизу вверх по вертикальным трубам, температура кипения жидкости внизу выше, чем вверху, из-за большего гидроста­тического давления. Таким образом, в нижней части труб кипение отсутствует и температура увеличивается до до­стижения температуры кипения, соответствующей локаль­ному давлению. Затем возникает кипение вследствие боль­шого подвода теплоты и мгновенного парообразования в перегретой жидкости, и температура уменьшается. Следова­тельно, разность температур в середине труб меньше, чем на концах, что может привести к значительному снижению характеристик в вертикальных испарителях (как с корот­кими, так и с длинными трубами), а также испарителях типа «корзины». Для повышения концентрации растворов необходимо учитывать рост температуры кипения при уве­личении концентрации.

В качестве примера испарителя воды с естественной циркуляцией на рис.7 представлен вертикальный аппарат. Коэффициент теплопередачи 3000-4000 Вт/м2∙К. Естественная циркуляция в этом аппарате происходит вследствие того, что образую­щаяся в кипятильных трубках пароводяная эмульсия имеет меньшую плотность, чем вода в кольцевом зазоре между корпусом и трубной системой, где ей сообщается значительно меньшее удельное количество тепла на единицу объема.
Рис.7 Вертикальный испаритель:

1- парообразующее пространство;

2- патрубок для подачи греющего пара;

3-патрубок для подачи выпариваемой жидкости;

4- нижняя крышка;

5- отвод конденсата пара;

6- трубка для сдувок;

7- греющая камера;

8- трубка для сдувок неконденсируемого газа;

9- дренаж сепаратора;

10- сепаратор;

11- патрубок для отвода сухого пара.

При этом в трубках устанавливается подъем­ное движение пароводяной эмульсии, а в кольцевом зазоре — опускное движение воды. Паровые пузырьки по выходе среды из трубок перехо­дят в паровой объем. Уровень воды в аппарате поддерживается с по­мощью поплавкового регулятора питания выше верхней трубной решет­ки. Первичный (греющий) пар поступает в межтрубное пространство греющей камеры. Для отделения влаги из вторичного пара в верхней части парового пространства встроено сепа­рирующее устройство.

Паропреобразователь - теплообменный аппарат для испарения воды; разновидность испарителя, отличающаяся тем, что конечным продуктом рабочего процесса является не дистиллят (питательная вода), а пар водяной.
Библиографический список

1. Лебедев П.Д. Тепломассообменные сушильные и холодильные установки. М.: Энергия, 1972 – 320с.

2. Виноградов С.Н. Выбор и расчёт теплообменников. Пермь: ПГУ, 2001 – 100с.

3. Касаткин А.Г. Основные процессы и аппараты технической технологии. М.: Химия, 1970 – 374с.

4. Дытнерский Ю.И. Процессы и аппараты технической технологии. Ч.1 М.: Химия, 1995 – 400с.

5. Мартыненко О.Г. Справочник по теплообменникам. Т.2. М.: Энергоатомиздат, 1987 - 352с.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: