Механизмы распространения радиоволн

Ввиду разнообразия сложности и изменчивости природных условий анализ процесса распространения радиоволн приводит к решению сложных задач. Радиоволны излучаются и принимаются антеннами, расположенными либо в относительной близости Земли, либо в значительном удалении от нее, например, обе антенны радиолинии находятся в космосе. Околоземное пространство неоднородно. Поверхность Земли и атмосфера оказывают решающее влияние на формирование электромагнитных волновых процессов. Представим себе сначала, что в силу направленности действия передающей антенны излучение происходит под малыми углами к горизонту. В этом случае характер волнового процесса существенно определяется свойствами почвы (или морской поверхности). В результате поглощения, вызываемого действием материальной среды, поле убывает с расстоянием гораздо быстрее, чем в свободном пространстве. Особенности строения атмосферы в данном случае могут не влиять на передачу энергии вдоль границы раздела «воздух—земная поверхность», как будто атмосфера вообще отсутствует. Такого рода волновой процесс называется земной или поверхностной волной (рисунок 2, а).

Радиопередача из одной точки пространства в другую при определённых условиях может быть осуществлена иным путём, посредством так называемой ионосферной (пространственной) волны. Электрическая неоднородность верхних ионизированных слоёв атмосферы обеспечивает механизм распространения радиоволн с частотой до 30-40 МГц за счёт последовательного многократного отражения от ионизированных слоёв атмосферы и поверхности Земли (рисунок 2, б).

Разреженный газ ионизирован, причём степень ионизации ионосфер ной плазмы сначала возрастает с высотой (в так называемой внутренней ионосфере), затем убывает, а, как известно, с ростом концентрации свободных электронов уменьшается диэлектрическая проницаемость среды. В результате внутренняя ионосфера представляет собой материальную среду с вертикально падающим показателем преломления.

Излучение антенны А, представляющее собой вблизи нижней границы ионосферы локально плоскую волну, можно представить лучом, падающим на слой ионосферы под некоторым углом. Этот луч претерпевает рефракцию и может вернуться к Земле, как показано на рисунке 2, б, причём рефракция в ионосфере может чередоваться с отражением от земной поверхности. При многократном переотражении от ионосферы и Земли радиоволны распространяются на огромные расстояния при сравнительно малом поглощении. Роль ионосферы весьма значительна: она образует нечто вроде «природного зеркала», которое совместно с земной поверхностью образует ионосферный волновод. Однако при достаточно коротких волнах (диапазон УКВ) ионосфера уже не играет роли отражателя. Если луч «не успевает» искривиться во внутренней ионосфере настолько, чтобы за счёт неоднородностей повернуть к Земле, он уходит во внешнюю ионосферу, где концентрация заряженных частиц постепенно падает. Это обстоятельство играет положительную роль, поскольку именно благодаря отмеченной «прозрачности» ионосферы оказывается возможна радиосвязь с космическими объектами и радиоастрономия.

Рисунок 2 − Типы волн

Нижние слои атмосферы также оказывают влияние на распространение радиоволн. В тропосфере, верхняя граница которой лежит на высоте порядка 15 км, сосредоточено около 80% всей массы воздуха. В тропосфере также происходит рефракция, проявляющаяся на больших расстояниях (рисунок 2, в). При распространении радиоволны в тропосфере происходит процесс рассеяния, то есть переизлучения электромагнитного поля в неоднородной среде по направлениям, отличным от направления распространения первичного поля. Существенную роль при этом играют случайные неоднородности тропосферы. За счёт слабых электрических неоднородностей локального характера в атмосфере происходит рассеяние радиоволн. Рассеяние электромагнитных волн на неоднородностях в тропосфере используется для передачи информации на частотах выше 300 МГц по наземным радиолиниям. Механизм распространения волны в тропосфере называют дальним тропосферным распространением.

Мы обсудили лишь общие, главные особенности природных условий, определяющих характер распространения радиоволн. Проследим, как они проявляются в различных диапазонах радиоволн.

Для таких диапазонов, как СДВ и ДВ, все виды почв (и, тем более, водные среды) выступают как проводники. Земная поверхность отражает эти волны без значительного поглощения. Сверхдлинные и длинные волны неглубоко проникают в ионосферу. При малых частотах изменение диэлектрической проницаемости плазмы при изменении концентрации электронов является значительным, так что нижняя граница ионосферы выражена более чётко. В результате длинные волны распространяются между двумя хорошо отражающими поверхностями, как в волноводе.

Средние волны сильнее поглощаются почвой и глубже проникают в ионосферу. Для объяснения их распространения необходимо рассматривать суточный режим состояния ионосферы.

К диапазону КВ (декаметровые волны) относят радиоволны длиной от 10 до 100 м (3 — 30 МГц). Декаметровые волны могут распространяться на тысячи километров путём многократных отражений от ионосферы о Земли, и для этого не требуются передатчики большой мощности. Диапазон КВ в основном используется для построения систем дальней связи. Основные негативные особенности данного диапазона: ограниченность полосы частот по скорости передачи информации, подверженность ионосферным возмущениям, многолучёвость, глубокие замирания и тд.

Верхняя граница рабочих частот КВ диапазона (максимальная применимая частота (МПЧ)) зависит от длины трассы, высоты отражения, закона распределения электронной плотности по высоте, критической частоты слоя. Нижняя граница рабочих частот определяется тем, как с уменьшением частоты увеличивается поглощение в ионосфере, вследствие чего уменьшается напряжённость поля. Значение наименьшей применимой частоты (НПЧ) зависит от поглощения, уровня помех, мощности излучения, устойчивости применяемого сигнала и т.д.

При изменении состояния ионосферы НПЧ и МПЧ изменяются, Для обеспечения непрерывного действия КВ радиолинии необходима корректировка рабочих частот.

В диапазонах КВ и УКВ приём всегда сопровождается непрерывным изменением уровня сигнала во времени, то есть замиранием. Замирание на КВ линиях имеет интерференционное и поляризационное происхождения, а также связано с изменением поглощения в ионосфере. для повышения устойчивости работы КВ линии связи при наличии замираний обычно используют прием на разнесенные в пространстве антенны, а также антенны с различной поляризацией. Обычно расстояние между двумя соседними приёмными антеннами выбирают примерно равным .

Расчет КВ радиолиний обычно производится по следующей схеме:

1. Определяются углы наклона траекторий и требования к характеристикам направленности КВ антенн,

2. Рассчитывается напряжённость электрического поля,

3. Оценивается влияние условий распространения на работу радиолинии.

Основным типом передающих антенн, применяемых в этом диапазоне, являются синфазные горизонтальные диапазонные антенны (СГД). Антенна представляет собой синфазную решётку, состоящую из нескольких этажей синфазно возбуждаемых симметричных вибраторов. СГД имеют высокие коэффициент направленного действия (КНД) и коэффициент усиления (КУ), обладают возможностью управления характеристикой направленности в горизонтальной и вертикальной плоскостях.

К диапазону УКВ относятся радиоволны длиной от 1 мм до 10 м (30 МГц – 300 ГГц). Характерная особенность этого диапазона — большая частотная ёмкость, позволяющая передавать широкополосную информацию. Одним из механизмов распространения УКВ-волн в тропосфере является ДТР, с помощью которого можно передавать информацию в разных случаях от 150 до 1000 км. На тропосферных линиях связи приём сопровождается глубокими общими и селективными замираниями, что объясняется флуктуирующей многолучевой структурой принимаемого рассеянного поля. Для линий ДТР характерно быстрое убывание уровня сигнала с увеличением длины радиолиний.

Сопоставляя связь на длинных и коротких волнах, необходимо учитывать, что в первом случае передающие антенны, представляющие собой огромные сооружения, всё же остаются малыми по сравнению с длиной волны. Они имеют небольшой КПД и обладают слабой направленностью действия. В этом смысле короткие волны оказываются более предпочтительными. Дальняя связь на них осуществляется при помощи направленных антенн; мощности передатчиков относительно малы. Однако временная изменчивость параметров ионосферы приводит к неустойчивости коротковолновой связи.

Характеризуя связь на УКВ, следует в первую очередь учитывать, что ионосфера уже не обладает способностью возвращать рефрагирующий луч к Земле. Поэтому типично использование УКВ лишь в пределах прямой видимости и для связи с космическими объектами.

Систематические и случайные изменения параметров природных сред оказывают сильное влияние на работу радиолиний. Свойства ионосферы зависят от солнечной активности, испытывая суточные, сезонные и более медленные изменения. Тепловые режимы воздушной массы определяют свойства тропосферы. Случайные изменения, флуктуации характеристик свойственны в той или иной мере всем радиолиниям. Одно из их проявлений — «замирания» передаваемых сигналов, случайные амплитудные вариации. Случайные изменения, разумеется, ведут к искажениям сигналов. Следует, однако, иметь в виду и полезную роль флуктуаций пространственных параметров тропосферы и ионосферы. Рассеяние на возникающих при этом неоднородностях обуславливает распространение УКВ за пределы прямой видимости.

В заключение раздела отметим одно важное обстоятельство. Разделение единого процесса распространения радиоволн на отдельные механизмы носит несколько условный характер. Тем не менее изучение вышеуказанных механизмов позволяет выявлять оптимальные траектории, оценить потери и возможные искажения сигналов. В наземных линиях в точке приёма обычно доминирует один из них, связанный или с земной, или с рассеянной, или с пространственной волной, в зависимости от рабочей частоты и протяжённости линии.

Параметры антенн

Особенности распространения радиоволн зависят и от параметров антенн. К параметрам антенн, влияющим на процессы РРВ, относятся следующие характиристики:

1. Диаграмма направленности дает зависимость распределения напряженности поля, создаваемое передающей антенной в дальней зоне, от угловых координат , например от углов в вертикальной и горизонтальной плоскостях:

Различают диаграмму направленности по напряженности поля и по плотности потока мощности . Приближенной характеристикой диаграммы направленности, позволяющей судить о степени концентрации излучения, является ширина диаграммы по уровню половины мощности . Она равна телесному углу, в пределах которого концентрируется основная часть мощности волны, подведенной к антенне. Ширина диаграммы зависит от отношения размера излучающей части антенны . к длине волны : для больших антенн . Если, например, параболическая антенна имеет диаметр раскрыва , то основная часть излучаемой мощности будет сконцентрирована в телесном угле . Помимо главного направления, в котором сконцентрирована основная мощность волн, антенна излучает и в других направлениях, соответствующих «боковым лепесткам» диаграммы направленности. Излучение через боковые лепестки стремятся сделать минимальным, поэтому качество антенны характеризуют также уровнем боковых лепестков.

2. Коэффициент направленного действия (КНД) показывает, во сколько раз реальная антенна увеличивает плотность потока мощности волны в главном направлении по сравнению с идеализированной антенной, излучающей равномерно во всех направлениях, если эти антенны излучают одинаковую мощность. Возможно другое определение: КНД – отношение мощности излучения изотропной антенны к мощности излучения направленной антенны при условии создания ими равной напряженности поля в точке приема:

.

Чем меньше ширина диаграммы направленности , тем больше концентрация излучения и больше . Малые проволочные или вибраторные антенны, для которых длина , а диаграмма направленности широкая, имеют малый коэффициент направленного действия . Параболические антенны с большим диаметром раскрыва имеют большие значения . Рекордные имеют параболические антенны, применяемые для дальней космической связи или для целей радиоастроiюмии. Наибольшая такая антенна имеет диаметр 100 м и в диапазоне см коэффициент направленного действия .

Различают коэффициент усиления (КУ) антенны и коэффициент направленного действия . Эти величины отличаются тем, что при определении учитывают потери энергии на тепло, выделяемое в антенне, т. е. и отличаются коэффициентом полезного действия (КПД) . Эти коэффициенты связаны соотношением

,

где КПД показывает отношение мощности, потраченной на излучение, к полной мощности, подводимой к антенне

,

− мощность потерь в антенне.

Если антенна выполнена из материала с высокой проводимостью, например рупорная антенна из меди с серебрением поверхности, то потери на тепло пренебрежимо малы и ; если же мачтовая антенна расположена на грунте, то часть излучения будет поглощаться в грунте и будет существенно меньше .

Коэффициент направленного действия, так же как и КУ, часто выражают в децибелах:

.

3. Радиоволны, излучаемые антенной в разных направлениях, отличаются не только амплитудой, во и фазой. При фиксированном расстоянии от антенны фаза волны в разных направлениях отличается, поэтому вводят фазовую характеристику антенны, описывающую зависимость фазы волны от направления при постоянном расстоянии . Если размер антенны , например короткий вибратор, то расстояние вполне определено; если же антенна имеет большие размеры или сложную форму, например рупорная антенна, то не очевидно, что же нужно считать «центром» антенны. для точных фазовых измерений важно знать положение «фазового центра» антенны. Фазовым центром антенны называется положение точки вблизи или на антенне, для которой равнофазная поверхность излученной волны в дальней зоне антенны есть сфера.

4. В зависимости от поляризации излучаемой волны различают антенны линейной, эллиптической или круговой поляризации.

Выше были перечислены характеристики передающей антенны, далее укажем параметры приемных антенн.

5. Диаграмма направленности приемной антенны , определяет зависимость мощности, выделяемой антенной на согласованную нагрузку, от ее ориентации. Диаграмма направленности одной и той же антенны при работе на передачу и прием одинакова.

6. Эффективная поверхность приемной антенны равна отношению мощности, развиваемой антенной на согласованной нагрузке , к плотности потока мощности радиоволны , т. е. . Эффективная поверхность приемной антенны связана с коэффициентом направленного действия соотношением .

7. Для проволочных или вибраторных приемных антенн вводится действующая длина антенны , эта величина связывает напряжение, развиваемое антенной , и напряженность поля следующим образом: .

8. Приемная антенна воспринимает излучение определенной поляризации; различают приемные антенны линейной, круговой и эллиптической поляризации. Поляризационные характеристики одной и той же антенны, работающей на прием и передачу, совпадают.

В задачах распространения радиоволн характеристики антенн считаются заданными, а фидерная линия − согласованной, т. е. вся мощность передатчика подводится к антенне или от приемной антенны подводится к приемнику.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: