Общее введение к разделу «Тепломассообмен»

МИНИСТЕРСТВО РОССИЙСКОЙ ФЕДЕРАЦИИ

ПО ДЕЛАМ ГРАЖДАНСКОЙ ОБОРОНЫ,

ЧРЕЗВЫЧАЙНЫМ СИТУАЦИЯМ И ЛИКВИДАЦИИ ПОСЛЕДСТВИЙ

СТИХИЙНЫХ БЕДСТВИЙ

УРАЛЬСКИЙ ИНСТИТУТ ГОСУДАРСТВЕННОЙ ПРОТИВОПОЖАРНОЙ СЛУЖБЫ

 

 

Кафедра физики и теплообмена

 

 

Дисциплина:

ТЕПЛОТЕХНИКА

 

 

Л Е К Ц И Я

 

ТЕМА 12: ОСНОВНЫЕ ПОНЯТИЯ ТЕОРИИ ТЕПЛООБМЕНА

 

 

Автор:

д.ф.-м.н., профессор П.В. Скрипов

 

 

Екатеринбург 2006


Цели лекции:

 

Учебные: Сформулировать и дать представление об основных понятиях теории теплообмена; раскрыть суть гипотезы Фурье и смысл краевых условий.

 

Воспитательные: Воспитывать стремление к углубленному изучению предмета; прививать убежденность в практической значимости получаемых в лекционном курсе знаний.

 

Развивающие: Развивать способность творчески воспринимать и конспектировать предоставляемый материал; развивать навыки самостоятельной аналитической работы, умение выделять главное, проводить сопоставление и обобщение.

 

Метод проведения: лекция

Время занятия: 160 минут

Место проведения: аудитория

Материальное обеспечение: раздаточный материал с представлением основных соотношений и графиков

 

ЛИТЕРАТУРА:

1. Теплотехника: Учебник для вузов / А.П. Баскаков, Б.В. Берг, О.К. Витт и др.; под ред. А.П. Баскакова. 2-е изд., перераб. – М.: Энергоатомиздат, 1991. 224 с.

2. Техническая термодинамика: Учебное пособие / В.Н.Королёв, Е.М.Толмачёв. Екатеринбург: УГТУ, 2001. 180 с.

 

ПЛАН ЛЕКЦИИ:

1. Общее введение. Предмет, задачи и составные части раздела «Тепломассообмен».

2. Введение в теорию теплопроводности.

3. Температурное поле.

4. Температурный градиент.

5. Основной закон теплопроводности.

6. Коэффициент теплопроводности.

7. Дифференциальное уравнение теплопроводности. Уравнение Фурье.

8. Краевые условия.

 


Общее введение к разделу «Тепломассообмен».

 

В учении о теплообмене рассматриваются процессы распространения теплоты в твердых, жидких и газообразных телах. Эти процессы по своей природе весьма многообразны, отличаются большой сложностью и обычно развиваются в виде це­лого комплекса разнородных явлений.

Перенос теплоты может осуществляться тремя способами: теплопроводностью, конвекцией и излучением, или радиацией. Эти формы теплообмена глубоко различны по своей природе и характеризуются различными законами.

Процесс переноса тепла теплопроводностью происходит между непосредственно соприкасающимися телами или частицами тел с различной температурой. Учение о теплопроводности однородных и изотропных тел опирается на весьма прочный теоретический фун­дамент. Оно основано на простых количественных законах и распо­лагает хорошо разработанным математическим аппаратом. Тепло­проводность, или кондукция, представляет собой, согласно взгля­дам современной физики, молекулярный процесс передачи теплоты. В металлах при такой передаче теплоты большую роль играют свободные электроны.

Известно, что при нагревании тела кинетическая энергия его молекул возрастает. Частицы более нагретой части тела, сталкива­ясь при своем беспорядочном движении с соседними частицами тела, сообщают им часть своей кинетической энергии. Этот процесс по­степенно распространяется по всему телу. Например, если нагреть один конец металлического стержня, то через некоторое время температура другого его конца также повысится. Перенос теплоты теплопроводностью зависит от физических свойств тела, от его гео­метрических размеров, а также от разности температур между раз­ными частями тела. При определении переноса теплоты теплопроводностью в реальных телах встречаются известные трудности, которые на практике до сих пор удовлетворительно не решены. Эти трудности состоят в том, что тепловые процессы развиваются в не однородной среде, свойства которой зависят от температуры и изме­няются по объему; кроме того, трудности возрастают с увеличением сложности конфигурации системы.

Второй вид переноса теплоты называют конвекцией. Конвекция происходит только в газах и жидкостях. Этот вид переноса теплоты осуществляется при перемещении и перемешивании всей массы не­равномерно нагретых жидкости или газа. Конвекционный перенос теплоты происходит тем интенсивнее, чем больше скорости движе­ния жидкости или газа, так как в этом случае за единицу времени перемещается большее количество частиц тела. В жидкостях и га­зах перенос теплоты конвекцией всегда сопровождается теплопровод­ностью, так как при этом осуществляется и непосредственный кон­такт частиц с различной температурой.

Одновременный перенос теплоты конвекцией и теплопроводно­стью называют конвективным теплообменом; он может быть свобод­ным и вынужденным. Если движение рабочего тела вызвано искус­ственно (вентилятором, компрессором, мешалкой и др.), то такой конвективный теплообмен называют вынужденным. Если же движе­ние рабочего тела возникает под влиянием разности плотностей отдельных частей жидкости от нагревания, то такой теплообмен называют свободным, или естественным, конвективным тепло­обменом.

Третий вид теплообмена называют излучением, или радиацией. Процесс передачи теплоты излучением между двумя телами, разде­ленными полностью или частично пропускающей излучение средой, происходит в три стадии: превращение части внутренней энергии одного из тел в энергию электромагнитных волн, распространение электромагнитных волн в пространстве, поглощение энергии излучения другим телом. При сравнительно невысоких температурах перенос энергии осуществляется в основном инфракрасными лу­чами.

Передача теплоты излучением протекает независимо от процес­са теплопроводности и конвекции, однако последние в большинстве случаев сопутствуют радиации. Совокупность всех трех видов пере­носа теплоты называют сложным теплообменом. Однако изучение закономерностей сложного теплообмена представляет собой до­вольно трудную задачу. Поэтому, изучают порознь каждый из трех видов теплообмена, после чего становится возможным вести расчеты, относящиеся к сложному теплообмену.


Температурное поле.

Теплопроводность представляет собой процесс распространения энергии между частицами тела, находящимися друг с другом в соприкосновении и имеющими различные температуры.

Рассмотрим нагрев какого-либо однородного и изотропного те­ла (в дальнейшем будем рассматривать только такие тела). Изотропным называют тело, обладающее одинаковыми физическими свойствами по всем направлениям. При нагреве такого тела тем­пература его в различных точках изменяется во времени и теплота распространяется от мест с более высокой температурой к местам с более низкой температурой. Из этого следует, что в общем случае процесс передачи теплоты теплопроводностью в твердом теле сопро­вождается изменением температуры как в пространстве, так и во времени, т. е.

t=f(x, у, z, τ), (1-1)

где t — температура тела; х, у, z — координаты точки; τ — время.

Эта функция определяет температурное поле в рассматриваемом теле. В математической физике температурным полем называют совокупность значений температуры в данный момент времени для всех точек изучаемого пространства, в котором протекает процесс.

Если температура тела есть функция координат и времени, то температурное поле тела будет нестационарным, т. е. зависящим от времени:

t = f (x, у, z, τ); ∂t/∂τ ≠ 0 (1-2)

Такое поле отвечает неустановившемуся тепловому режиму теп­лопроводности. Если температура тела есть функция только координат и не изменяется с течением времени, то температурное поле тела будет стационарным:

t = f (x, у, z, τ); ∂t/ ∂τ = 0. (1-3)

Уравнение двухмерного температурного поля для режимов:

стационарного t = f (x, у); ∂t/ ∂z = ∂t/ ∂τ = 0;

нестационарного t = f (x, у, τ); ∂t/ ∂z = 0 ∂t/ ∂τ ≠ 0.

На практике встречаются задачи, когда температура тела является функцией одной координаты, тогда уравнение одномерного температурного поля для рассмотренных режимов теплообмена представляет собой:

нестационарный режим

t = f (x, τ); ∂t/ ∂z = ∂t/ ∂y = 0; ∂t / ∂τ ≠ 0;

стационарный режим

t = f (x); ∂t/ ∂z = ∂t/ ∂y = 0; ∂t/ ∂τ = 0. (1-4)

Одномерной, например, является задача о переносе теплоты в стенке, у которой длина и ширина бесконечно велики по сравне­нию с толщиной.

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: