Энергия электрона в потенциальной яме

Кинетическую энергию Е можно выразить через длину волны де Бройля (см. 27). Учитывая условие (32), из (27) получаем

   
(33)

Выражение (33) позволяет сделать очень важный вывод:

Энергия микрочастицы, находящейся в " потенциальном ящике ", может принимать только дискретный набор значений: Е1, Е2, Е3 и так далее. Эти значения называются уровнями энергии, а число n — квантовым числом.

Таким образом, согласно уравнения Шредингера, энергия микрочастицы квантуется, а её энергетический спектр — дискретный.

Следует отметить и ещё один важный момент. Как видно из (33), энергия микрочастицы никогда не равна нулю, а принимает минимальное значение равное .

Эта энергия получила название нулевой. Наличие её у частицы говорит о том, что частицы никогда не прекращают своего движения.

Теперь определим интервал Еn+1, n между двумя соседними уровнями энергии частицы в потенциальном ящике.

Имеем и , тогда

(34)
  • Если размеры ящика велики, например, а = 1 см = 10-2 м, то из (34) получаем

То есть уровни энергии располагаются очень тесно и образуют практически непрерывный спектр.

  • Если же принять ширину ящика а = 5 = 5 10-10 м, то

Полученные значения говорят о явной дискретности энергетических уровней.

Туннельный эффект

Оправдавшееся предположение Луи де Бройля о существовании у частиц волновых свойств и соотношение неопределённостей Гейзенберга позволили обнаружить у микрочастиц уникального свойства, невозможного в макромире.

Речь идёт о так называемом туннельном эффекте.

Суть туннельного эффекта заключается в возможности прохождения (проникания) частиц сквозь потенциальный барьер.

 

   
Рис. 6 Запишем уравнения Шредингера для каждой из обозначенных номерами на рис. 6(а) областей: для областей 1 и 3 вне барьера
, где

для области 2 внутри барьера

, где

Решение этих уравнений имеет вид:

   
для области 1 — до барьера
для области 2— внутри барьера
для области 3— после барьера

 

     
Здесь ; А1, А3, В1 и В2— коэффициенты.

Поскольку уравнение для волновой функции 2 (х) внутри барьера не содержит мнимой части, то описываемая им волна не является плоской.

Качественный вид получаемых волновых функций, приведённый на рис.6 (б), показывает, что

1. внутри барьера (область 2) волновая функция не равна нулю, хотя и не представляет собой плоскую волну;

2. справа от барьера (область 3), если барьер не очень широк, волновая функция имеет вид волны де Бройля с той же частотой и импульсом, что и слева от барьера (область 1), но с меньшей амплитудой.

Из полученных уравнений следует, частица имеет отличную от нуля вероятность прохождения сквозь потенциальный барьер конечной ширины.

Для описания туннельного эффекта вводится понятие коэффициентапрозрачности потенциального барьера D. Если по аналогии с оптикой для волн де Бройля подсчитать интенсивность I пад падающей на барьер волны и интенсивность I прох волны, прошедшей сквозь барьер, то прозрачностью (коэффициентом прозрачности) потенциального барьера называется величина

(35)

Эту величину можно рассматривать как вероятность прохождения волн де Бройля сквозь потенциальный барьер.

По аналогии с оптикой можно ввести и коэффициент отражения R, связанный с " прозрачностью " барьера — D = 1 - R. Расчёты, которые выходят за рамки данного курса, показывают, что прозрачность барьера зависит от " высоты " потенциального барьера и его формы.

Для прямоугольного потенциального барьера (рис.6) высотой U 0 и шириной L прозрачность барьера выражается формулой

   
, (36)

где m — масса частицы, а W — её энергия.

В случае, когда потенциальный барьер имеет сложную форму, прозрачность барьера подсчитывается по формуле

   
(37)

Здесь х1 и х2 — координаты начала и конца потенциального барьера U(x) для данного значения полной энергии W частицы.

В формулах (36) и (37) D0 — постоянный коэффициент, близкий к единице.

Туннельный эффект получил экспериментальное доказательство после открытия холодной эмиссии электронов из металла. Вырывание электронов из металла происходит при напряжённостях электрического поля в сотни раз меньших, чем тех, что необходимы для преодоления поверхностного скачка потенциала на границе металл-вакуум. Эффект объяснился тем, что под действием внешнего поля ширина потенциального барьера на границе металл-вакуум становилась настолько узкой, что электроны могли проникать сквозь него (туннелировать), даже при собственной энергии меньшей, чем высота этого барьера.

Именно туннельный эффект играет основную роль в явлениях -распада.

Явление автоионизации, при котором электрическое поле вырывает электроны из отдельных атомов при напряжённостях меньших, чем говорит классическая электродинамика, также получило своё объяснение с использованием туннельного эффекта.

Как видно из формул (36) и (37), прозрачность барьера D сильно зависит от массы частицы (экспоненциально уменьшается с увеличением массы), поэтому туннельный эффект проявляется наиболее отчётливо только для микромира.

1. 1. Акустическое поле (см. § 6.3, аускультация, фонокардиография).

2. 2. Электрическое поле (см. § 12.5, электрокардиография).

3. 3. Магнитное поле (см. § 13.5, магнитокардиография).

4. 4. Электромагнитное поле (см. § 22.5, термография).

В популярной литературе часто используется термин «биопо­ле», понимая под этим некоторое специфическое влияние орга­низма на окружающие тела или некоторое специфическое излуче­ние биологических объектов. В связи с этим нужно определенно сказать, что организм является источником физических полей и каких-либо особых «биополей» не создает.

Особый вопрос — как представить результат исследования (ре­гистрации) физического поля организма (органов, тканей) для це­лей диагностики. Делается это по-разному. Так, например, при аускультации врач выслушивает звуки, т. е. субъективно оцени­вает их громкость и частоту. При электрокардиографии докумен­тально фиксируется временная зависимость разности потенциа­лов на теле пациента, возникающих при сердечной деятельности. При термографии тепловое излучение отображается на экране тепловизора.

 

РАЗДЕЛ 7

 

 

Физика атомов и молекул. Элементы квантовой биофизики

До конца XIX в. атом считали неделимой частицей. Однако открытие электронов и других эле­ментарных частиц убедило ученых в сложном строении атома.

Решающее значение для понимания структуры атома сыграли знаменитые опыты Резерфорда по рассеянию альфа-частиц. Были созданы условия для развития физики атома, которая изучает строение и состояние атомов и смежные вопросы. Это теория ато­ма, атомная оптическая спектроскопия, рентгеновская спектро­скопия, радиоспектроскопия и др.

Отдельные вопросы физики атомов и особенно физики молекул перекликаются с вопросами, рассматриваемыми в химии. Четкие границы раздела в этих областях науки отсутствуют.

Врач должен иметь представление о природе физических и фи­зико-химических процессов, происходящих в организме челове­ка. В конечном счете эти процессы «разыгрываются» на молекулярном уровне. Поэтому здесь рассматриваются вопросы, связан­ные с энергетическими превращениями молекул в биологических системах (хемилюминесценция, фотобиологические явления и др.). Эти темы объединяют термином «квантовая биофизика», ви­димо, по созвучию с квантовой механикой.

ГЛАВА 23

Волновые свойства частиц. Элементы квантовой механики

Квантовой механикой называют теорию, устанавливающую способ описания и законы движения микрочастиц (элемен­тарных частиц, ядер, атомов, молекул и их систем, в частности кристаллов, и т. д.)- Необычность квантово-механических представлений по сравнению с классической физи­кой инициировала пересмотр основных физических моде­лей и представлений, которые казались очевидными и незыб­лемыми. Прежде всего, это коснулось понятия самих частиц и принципов их движения.

В этой главе дается понятие не только о квантовой механике, но и о тех идеях и опытах, которые привели к этой теории. Здесь также рассматривается электронная микроскопия как метод, основанный на волновых свойствах электронов.

 

§ 23.1. Гипотеза де Бройля.

Опыты по дифракции электронов и других частиц

Важным этапом в создании квантовой механики явилось уста­новление волновых свойств микрочастиц. Идея о волновых свой­ствах частиц была первоначально высказана как гипотеза фран­цузским физиком Луи де Бройлем (1924)1. Эта гипотеза появи­лась благодаря следующим предпосылкам.

В физике в течение многих лет господствовала теория, соглас­но которой свет есть электромагнитная волна. Однако после ра­бот Планка (тепловое излучение), Эйнштейна (фотоэффект) и др. стало очевидным, что свет обладает корпускулярными свойст­вами.

Чтобы объяснить некоторые физические явления, необходимо рассматривать свет как поток частиц — фотонов. Корпускуляр­ные свойства света не отвергают, а дополняют его волновые свой­ства. Итак, фотонэлементарная частица, движущаяся со скоростью света, обладающая волновыми свойствами и име­ющая энергию , где частота световой волны.

Логично считать, что и другие частицы — электроны, нейтро­ны также обладают волновыми свойствами.

Выражение для импульса фотона получается из известной формулы Эйнштейна и соотношений и J

(23.1)

где с — скорость света в вакууме, — длина световой волны. Эта формула была использована де Бройлем и для других микрочас­тиц массой т, движущихся со скоростью v: , откуда

(23.2)

По де Бройлю, движение частицы, например электрона, опи­сывается волновым процессом с характеристической длиной вол­ны , в соответствии с формулой (23.2). Эти волны называют вол­нами де Бройля.

Гипотеза де Бройля была столь необычной, что многие круп­ные физики-современники не придали ей какого-либо значения. Несколькими годами позже эта гипотеза получила эксперимен­тальное подтверждение: была обнаружена дифракция электро­нов.

Найдем зависимость длины волны электрона от ускоряющего напряжения U электрического поля, в котором он движется. Из­менение кинетической энергии электрона равно работе сил поля:

Выразим отсюда скорость v и, подставив ее в (23.2), получим

(23.3)

Для получения пучка электронов с достаточной энергией, ко­торый можно зафиксировать, например, на экране осциллографа, необходимо ускоряющее напряжение порядка 1 кВ. В этом случае из (23.3) находим = 0,4 • 10~10 м, что соответствует длине волны рентгеновского излучения.

В гл. 19 было отмечено, что дифракция рентгеновских лучей наблюдается на кристаллических телах; следовательно, для диф­ракции электронов необходимо также использовать кристаллы.

К. Дэвиссон и Л. Джермер впервые наблюдали дифракцию электронов на монокристалле никеля, Дж. П. Томсон и независи­мо от него П. С. Тартаковский — на металлической фольге (поли­кристаллическое тело). На рис. 23.1 изображена электронограм-ма — дифракционная картина, полученная от взаимодействия электронов с поликристаллической фольгой. Сравнивая этот ри­сунок с рис. 19.21, можно заметить сходство дифракции электро­нов и рентгеновских лучей.

Способностью дифрагировать обладают и другие частицы, как заряженные (протоны, ионы и др.), так и нейтральные (нейтро­ны, атомы, молекулы).

Аналогично рентгеноструктурному анализу можно применять дифракцию частиц для оценки степени упорядоченности располо­жения атомов и молекул вещества, а также для измерения пара­метров кристаллических решеток. В настоящее время широкое распространение имеют методы электронографии (дифракция электронов) и нейтронографии (дифракция нейтронов).

Может возникнуть вопрос: что происходит с отдельными час­тицами, как образуются максимумы и минимумы при дифракции отдельных частиц?

Опыты по дифракции пучков электронов очень малой интен­сивности, т. е. отдельных частиц, показали, что при этом электрон

не «размазывается» по разным направ­лениям, а ведет себя как целая частица. Однако вероятность отклонения элект­рона по отдельным направлениям в ре­зультате взаимодействия с объектом дифракции различна. Наиболее вероят­но попадание электронов в те места, ко­торые по расчету соответствуют макси­мумам дифракции, менее вероятно их попадание в места минимумов. Таким образом, волновые свойства присущи не только коллективу электронов, но и каждому электрону в отдельности.

 

1 Гипотеза де Бройля была сформулирована до опытов, подтверждаю­щих волновые свойства частиц. Де Бройль об этом позднее, в 1936 г. писал так: «...не можем ли мы предположить, что и электрон так же двойстве­нен, как и свет? На первый взгляд такая идея казалась очень дерзкой. Ведь мы всегда представляли себе электрон в виде электрически заряженной материальной точки, которая подчиняется законам классической динами­ки. Электрон никогда не проявлял волновых свойств, таких, скажем, ка­кие проявляет свет в явлениях интерференции и дифракции. Попытка приписать волновые свойства электрону, когда этому нет никаких экспе­риментальных доказательств, могла выглядеть как ненаучная фантазия».

 

§ 23.2. Электронный микроскоп. Понятие об электронной оптике

Волновые свойства частиц можно использовать не только для дифракционного структурного анализа, но и для получения увеличенных изображений предмета.

Открытие волновых свойств электрона сделало возможным со­здание электронного микроскопа. Предел разрешения оптическо­го микроскопа (21.19) определяется в основном наименьшим зна­чением длины волны света, воспринимаемого глазом человека. Подставив в эту формулу значение длины волны де Бройля (23.3), найдем предел разрешения электронного микроскопа, в котором изображение предмета формируется электронными пучками:

(23.4)

Видно, что предел разрешения z электронного микроскопа за­висит от ускоряющего напряжения U, увеличивая которое можно добиться, чтобы предел разрешения был значительно меньше, а разрешающая способность значительно больше, чем у оптическо­го микроскопа.

Электронный микроскоп и его отдельные элементы по своему назначению подобны оптическому, поэтому воспользуемся анало­гией с оптикой для объяснения его устройства и принципа дейст­вия. Схемы обоих микроскопов изображены на рис. 23.2 — оп­тический; — электронный).

В оптическом микроскопе носителями информации о предмете АВ являются фотоны, свет. Источником света обычно служит лампа накаливания 1. После взаимодействия с предметом (погло­щение, рассеяние, дифракция) поток фотонов преобразуется и со­держит информацию о предмете. Поток фотонов формируется с помощью линз: конденсора 3, объектива 4, окуляра 5. Изображе­ние А1В1 регистрируется глазом 7 (или фотопластинкой, фотолюминесцирующим экраном и т. д.).

В электронном микроскопе носителем информации об образце являются электроны, а их источником — подогреваемый катод 1. Ускорение электронов и образование пучка осуществляется фоку­сирующим электродом и анодом — системой, называемой элек­тронной пушкой 2. После взаимодействия с образцом (в основном рассеяние) поток электронов преобразуется и содержит информа­цию об образце. Формирование потока электронов происходит

под воздействием электрического поля (система электродов и кон­денсаторов) и магнитного (система катушек с током). Эти системы называют электронными линзами по аналогии с оптическими линзами, которые формируют световой поток (3 — конденсорная; 4 — электронная, служащая объективом; 5 — проекционная). Изображение регистрируется на чувствительной к электронам фотопластинке или катодолюминесцирующем экране 6.

Чтобы оценить предел разрешения электронного микроскопа, подставим в формулу (23.4) ускоряющее напряжение U = 100 кВ и угловую апертуру и порядка 10~2 рад (приблизительно такие уг­лы используют в электронной микроскопии). Получим 2 ~ 0,1 нм; это в сотни раз лучше, чем у оптических микроскопов. Примене­ние ускоряющего напряжения, большего 100 кВ, хотя и повыша­ет разрешающую способность, но сопряжено с техническими сложностями, в частности происходит разрушение исследуемого объекта электронами, имеющими большую скорость. Для биоло­гических тканей из-за проблем, связанных с приготовлением об­разца, а также с его возможным радиационным повреждением, предел разрешения составляет около 2 нм. Этого достаточно, чтобы увидеть отдельные молекулы. На рис. 23.3 показаны нити бел­ка фстина, имеющие диаметр примерно 6 нм. Видно, что они со­стоят из двух спирально закрученных цепей молекул белка.

Укажем некоторые особенности эксплуатации электронного микроскопа. В тех частях его, где пролетают электроны, должен быть вакуум, так как в противном случае столкновение электронов с молекулами воздуха (газа) приведет к искажению изображения. Это требование к электронной микроскопии усложняет процедуру исследования, делает аппаратуру более громоздкой и дорогой. Ва­куум искажает нативные свойства биологических объектов, а в ря­де случаев разрушает или деформирует их.

Для рассматривания в электронном микроскопе пригодны очень тонкие срезы (толщина менее 0,1 мкм), так как электроны сильно поглощаются и рассеиваются веществом.

Для исследования поверхностной геометрической структуры клеток, вирусов и других микрообъектов делают отпечаток их по­верхности на тонком слое пластмассы (реплику). Обычно предва­рительно на реплику в вакууме напыляют под скользящим (ма­лым к поверхности) углом слой сильно рассеивающего электроны тяжелого металла (например, платины), оттеняющий выступы и впадины геометрического рельефа.

К достоинствам электронного микроскопа следует отнести боль­шую разрешающую способность, позволяющую рассматривать крупные молекулы, возможность изменять при необходимости ус­коряющее напряжение и, следовательно, предел разрешения, а также сравнительно удобное управление потоком электронов с по­мощью магнитных и электрических полей.

Наличие волновых и корпускулярных свойств как у фотонов, так и у электронов и других частиц, позволяет ряд положений и

 

законов оптики распространить и на описание движения заря­женных частиц в электрических и магнитных полях.

Эта аналогия позволила выделить как самостоятельный раздел электронную оптику — область физики, в которой изучается структура пучков заряженных частиц, взаимодействующих с электрическими и магнитными полями. Как и обычную оптику, электронную можно подразделить на геометрическую (лучевую) и волновую (физическую).

В рамках геометрической электронной оптики возможно, в ча­стности, описание движения заряженных частиц в электриче­ском и магнитном полях, а также схематическое построение изо­бражения в электронном микроскопе (см. рис. 23.2, б).

Подход волновой электронной оптики важен в том случае, ког­да проявляются волновые свойства заряженных частиц. Хорошей иллюстрацией этому является нахождение разрешающей способ­ности (предела разрешения) электронного микроскопа, приведен­ное в начале параграфа.

 

 

§ 23.3. Волновая функция и её физический смысл

Так как с микрочастицей сопоставляют волновой процесс, ко­торый соответствует ее движению, то состояние частиц в кванто­вой механике описывается волновой функцией, зависящей от ко­ординат и времени: Эта функция аналогична функ­ции s (см. § 5.7), описывающей волновой процесс в механике.

Если силовое поле, действующее на частицу, является стаци­онарным, т. е. не зависящим от времени, то -функцию можно представить в виде произведения двух сомножителей, один из ко­торых зависит от времени, а другой — от координат:

(23.5)

В дальнейшем будем рассматривать только стационарные состоя­ния; y-функция координат является вероятностной характеристи­кой пространственной локализации частицы. Поясним смысл этого утверждения.

Выделим в пространстве достаточно малый объем dV = dxdydz, в пределах которого значения функции можно считать одинако­выми. Вероятность нахождения dWB частицы в этом объеме про­порциональна объему и определяется, согласно М. Борну, квадра­том модуля y-функции:

(23.6)

Отсюда следует физический смысл волновой функции:

(23.7)

т. е. квадрат модуля волновой функции равен плотности ве­роятности, или отношению вероятности нахождения части­цы в малом объеме dV к этому объему.

Интегрируя выражение (23.6) по некоторому объему V, нахо­дим вероятность нахождения частицы в этом объеме:

(23.8)

Отсюда получаем условие нормировки волновой функции в виде , где интегрирование ведется по всему бесконечному пространству, вероятность нахождения в котором частицы равна единице.

 

 

§ 23.4. Соотношения неопределенностей

Одним из важных положений квантовой механики являются соотношения неопределенностей, предложенные В. Гейзенбергом. Существуют различные пары физических величин (называемые канонически сопряженными переменными), которые могут быть одновременно определены лишь с ограниченной точностью.

Пусть одновременно измеряют положение и импульс частицы, при этом неопределенности в измерении координаты и проекции импульса на эту координатную ось, например х, равны соответ­ственно

В классической физике нет каких-либо ограничений, запре­щающих с любой степенью точности одновременно измерить как одну, так и другую величину, т. е.

В квантовой механике положение принципиально иное: и D рх, соответствующие одновременному определению х и рх, связа­ны зависимостью

(23.9)

Таким образом, чем точнее определена координата

,

тем менее точно определена соответствующая проекцияим- импульса , и наоборот. Аналогично для у и г:

(23.10)

Формулы (23.9), (23.10) называют соотношениями неопределен­ностей для координат и импульсов. Вычисления, проделанные для электрона, показывают, что его локализация внутри атомного ядра невозможна, т. к. в этом случае неопределенность его скорости должна превысить величину скорости све­та. Действительно, если м (размер ядра атома), то из (23.9) сле­дует, что величина Apv должна превы­сить , следовательно, неопределенность ско­рости электрона , тогда как скорость света равна

Еще одной парой канонически сопряженных переменных яв­ляются энергия частицы Е и время t. Соотношение неопределен­ностей для этих переменных имеет вид

(23.11)

где — неопределенность энергии некоторого состояния систе­мы, — время его существования. Соотношение (23.11) означа­ет, что чем короче время существования какого-либо состояния системы, тем больше неопределенность значения энергии этого состояния. Энергетические уровни (дискретные значения энер­гии) E1 Е2 и т. д. имеют некоторую ширину (рис. 23.4), завися­щую от времени пребывания (времени жизни) системы в состоя­ниях, соответствующих этим уровням энергии.

«Размытость» уровней приводит к неопределенности энергии излучаемого фотона и его частоты при переходе системы с одного энергетического уровня на другой:

(23.12)

Это экспериментально проявляется в уширении спектральных линий.

 

 

§ 23.5. Уравнение Шредингера.

Электрон в потенциальной яме

Так как состояние микрочастицы описывают -функцией, то надо указать способ нахождения этой функции с учетом внешних условий. Это возможно в результате решения основного уравнения квантовой механики, предложенного Э. Шредингером (1926). Та­кое уравнение в квантовой механике постулируется так же, как в классической механике постулируется второй закон Ньютона.

Применительно к стационарным состояниям частицы уравне­ние Шредингера может быть записано так:

(23.13)

где т — масса частицы, Е и Еп — ее полная и потенциальная энергии (потенциальная энергия определяется силовым полем, в котором находится частица, и для стационарного случая не зави­сит от времени).

Если частица перемещается только вдоль некоторой линии, на­пример, вдоль оси ОХ (одномерный случай), то уравнение Шре­дингера существенно упрощается и принимает вид

(23.14)

Одним из наиболее простых примеров использования уравне­ния Шредингера является решение задачи о движении частицы в одномерной «потенциальной яме».

Пусть электрон перемещается вдоль оси ОХ только в пределах О< х < I (рис. 23.5). Это означает, что в указанном интервале y-функция отлична от нуля, а вне интервала < =0, х >= I) равна нулю. Так какна частицу в выделенном интервале 0 < х < I сило­вые поля не действуют, то ее потенциальная энергия может иметь любое постоянное значение (наиболее удобно принять Еп = 0). Вне этого интервала электрона нет, т. е. электрон не может выйти за пределы интервала, поэтому в области х <= 0 и х >= I следует счи тать его потенциальную энергию бесконечно большой, а волновую функцию равной нулю (y = 0). На рис. 23.5 показана графическая зависимость En = f(x). Интервал 0 < х < I, удовлетворяющий сформулированным вы­ше условиям, называют одномерной прямо­угольной потенциальной ямой с бесконечно высокими стенками. С учетом ЕП = 0 уравнение Шредингера (23.14) для интерва­ла 0 < х < I имеет вид

(23.14а)

 

Произведя замену

(23.15)

получим

(23.16)

Это уравнение аналогично дифференциальному уравнению гармони­ческого колебания (см. § 5.1), решение (5.8) которого запишем в виде

(23.17)

где y0 — амплитуда волновой функции, — ее начальная фаза.

Чтобы найти две постоянные а также возможные зна-

чения w или E, рассмотрим граничные условия с учетом непре­рывности волновой функции y на границах интервала:

1) 1) при х = 0, =0;

2) 2) при х = I, = 0.

Подставляя эти значения в (23.17), получаем , Физический смысл здесь имеет только одно значение:

С учетом из (23.17) имеем . Физический смысл здесь имеет только одно значение: , или , откуда

(23.18)

где п — целое число, оно принимает значения 1, 2, 3, ...; п # 0, так как в противном случае = 0 при любом х, что означает отсут­ствие электрона в потенциальной яме. Число п называют кванто­вым числом. Из (23.15) находим энергию , что с учетом (23. 18) дает

(23.19)

Индекс п при Е показывает, что различным значениям квантово­го числа п соответствует и разная энергия.

Подставляя со из (23.18) в (23.17) и учитывая , получаем

(23.20)

Проанализируем выражения (23.19) и (23.20). Прежде всего при­мечательно, что решение уравнения Шредингера для электрона в потенциальной яме без каких-либо дополнительных постулатов приводит к дискретным, квантованным значениям энергии:

и т. д.

Энергетические уровни E1 E2, E3, E4, соответствующие раз­ным Состояниям электрона, схематически показаны на рис. 23.6. Вычислим разность энергий соседних уровней га + 1 и га:

(23.21)

Из (23.21) видно, что при некотором фиксированном значении га дискретность, т. е. различие энергий соседних уровней тем меньше, чем больше размеры потенциальной ямы. Так, напри­мер, рассмотри два случая при га = 1:

 

Решение уравнения Шрёдингера для частицы в потенциальной яме.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: