Ультрафиолетовое излучение

Конспект урока по теме: «Виды излучений»

Дата: 28.03.2020

Преподаватель: Ракова Н.С.

Группа № 89 профессия «Мастер по ремонту и обслуживанию автомобиля», 1 курс

Цель урока: ознакомить обучающихся со свойствами волн, объяснить принцип и применение, рассмотреть виды излучений.

Форма работы: индивидуальная

Тип урока: изучение и закрепление  нового материала

Литература: Мякишев Г.Я., Буховцев Б.Б., Чаругин В.М. Физика 11 класс, Издательство Просвещение, 2018

Ход работы

Повторение:

- Что такое электромагнитная волна?

-Опишите процесс возникновения электромагнитной волны.

-От чего зависит скорость электромагнитной волны?

-Что является источником электромагнитных волн?

Что такое дифракция?

 

Изучение нового материала:

Электромагнитные волны

Мы знаем, что длина электромагнитных волн бывает самой разной. Свет составляет ничтожную часть широкого спектра электромагнитных волн. При изучении этой малой части спектра были открыты другие излучения с необычными свойствами. Принято выделять низкочастотное излучение, радиоизлучение, инфракрасные лучи, видимый свет, ультрафиолетовые лучи, рентгеновские лучи и γ-излучение.

 

Д.Максвелл разработал теорию электромагнитных явлений и показал, что в природе должны существовать электромагнитные волны, а Герц получил и исследовал их экспериментально. Из теории Максвелла следовало, что световое излучение представляет собой очень короткие электромагнитные волны, создаваемые собственными вибраторами: атомами и молекулами. К концу прошлого столетия было известно электромагнитное излучение с различными длинами волн.

Электромагнитные излучения с различными длинами волн имеют много отличий, но все они одной физической природы. Все виды электромагнитных излучений в большей или меньшей степени проявляют свойства: интерференции, дифракции, поляризации и обнаруживают квантовые свойства.

 

Вид излучения источник приемник диапазон свойства применение
Радиоволны   Инфракрасное   Видимое   Ультрафиолетовое     Рентгеновское   Гамма излучение Открытый колебательный контур   Нагретое тело     Нагретое тело до 800С     Солнце, кварцевые лампы   Рентгеновская трубка     Радиоактивные ядра Антенна   Болометр, тепловизор     Глаз   Фотопластинки     Фотопленка   Дозиметры, счетчик Гейгера 3кГц-3*1012 Гц     1012 Гц -1014 Гц   4*1014 8* 10 14 Гц     1014 Гц- 1016 Гц   1015 -10 20 Гц   Более 1020 Гц Несет информацию, отражается от ионосферы   Нагревает поверхность   Вызывает зрительные образы   Ионизация, загар, дезинфекция, фотосинтез   Высокая проникающая способность   Наибольшая проникающая способность Радиосвязь     Cушка, приборы ночного видения   Оптические приборы Медицина, дактилоскопия   Диагностика, лечение   Диагностика, лечение, астрономия

 

Деление электромагнитных излучений по диапазонам условное. Четкой границы между областями нет. Названия областей сложились исторически, они лишь служат удобным средством классификации источников излучений.

 

Все диапазоны шкалы электромагнитных излучений имеют общие свойства:

· Физическая природа всех излучений одинакова

· Все излучения распространяются в вакууме с одинаковой скоростью, равной 3*108 м/с

· Все излучения обнаруживают общие волновые свойства (отражение, преломление, интерференцию, дифракцию, поляризацию)

 

Радиоволны

Радиоволны – это электромагнитные волны с длиной волны λ=10-3—103 м., а частотный диапазон их ν = 105—1011 Гц. Определите диапазоны по таблице сами.

Получают радиоволны с помощью колебательных контуров и макроскопических вибраторов.

Свойства:

Радиоволны различных частот и с различными длинами волн по-разному поглощаются и отражаются средами, проявляют свойства дифракции и интерференции.

Применение: Радиосвязь, телевидение, радиолокация.

Инфракрасное излучение

 

электромагнитное излучение, занимающее на шкале электромагнитных волн область между красными лучами и радиоизлучением, чему соответствует диапазон длин волн

от ~ 760 нм до ~ 2 мм.

Солнечное излучение включает в себя также э/м волны, частоты которых ниже или выше видимого диапазона.

Видеофрагмент об обнаружении инфракрасных лучей.

ИК-излучение было открыто в 1800 г. английским физиком и астрономом Вильямом Гершелем. Частота этого излучения меньше частоты красного света. Диапазон ИК-излучения находится между 3*1011—4*1014 Гц.

Источники ИК-излучения: Солнце (50% его полного излучения), лампы накаливания с вольфрамовой нитью (70–80% их излучения), угольная электрическая дуга, и, вообще, любое нагретое тело; излучается атомами и молекулами вещества.

 

 

Свойства:

1.Проходит через некоторые непрозрачные тела, также сквозь дождь, дымку, снег.

2.Производит химическое действие на фотопластинки.

3.Поглощаясь веществом, нагревает его.

4.Вызывает внутренний фотоэффект у германия.

5.Невидимо.

6.Способно к явлениям интерференции и дифракции.

Применение:

· Получают изображения предметов в темноте, приборах ночного видения (ночные бинокли), тумане.

· Используют в криминалистике, в физиотерапии.

· в промышленности для сушки окрашенных изделий, стен зданий, древесины, фруктов.

 

 

Свет (видимое излучение)

Часть электромагнитного излучения, воспринимаемая человеческим глазом (от красного до фиолетового):

Диапазон длин волн: λ=8*10-7—4*10-7 м.

Частотный диапазон: ν=4*1014—8*1014 Гц.

Источники:

1. Естественные

2. Искусственные

3. Излучаются при ускоренном движении заряженных частиц.

Свойства:

1. Отражение

2. преломление

3. воздействие на глаз

4. дисперсия

5. интерференция

6. дифракция

7. поглощение

8. излучение

Применение:

Во всей повседневной жизни

Ультрафиолетовое излучение

 

электромагнитное излучение, занимающее спектральную область между фиолетовыми лучами и рентгеновским излучением, чему соответствует диапазон длин волн 10-8—4*10-7 м

Диск «Электронные уроки», «Колебания и волны», урок 12, стр. 6

УФ-излучение было открыто в 1801 г. при влиянии волн различной длины на активность химических веществ. Хлорид серебра распадается не только под действием видимого излучения (это явление используется в фотографии), но также под действием ультрафиолета.

Частота УФ-излучения гораздо выше, чем у видимого. Она находится в пределах от 8*1014—3*1016 Гц.

Распространенным источником УФ-излучения (кроме Солнца) является кварцевая лампа [фото1]. Благодаря бактерицидным свойствам УФ свет нашел применение в медицине и при так называемых косметических операциях (облучение послеоперационных рубцов).

Заметную долю ультрафиолетового излучения содержит излучение накаленных до 3000 К твердых тел. Мощным источником этого излучения является также любая высокотемпературная плазма. Для различных применений ультрафиолетового излучения используются специальные ртутные и другие газоразрядные лампы.

Озоновый слой, окружающий Землю, защищает нас от избытка УФ света.

Таким образом, к основным свойствам УФ-излучения можно отнести:

1. Невидимо

2. Высокая химическая активность

3. большая проникающая способность

4. Убивает микроорганизмы

5. В небольших дозах благотворно влияет на организм человека (загар)

6. В больших дозах оказывает отрицательное биологическое воздействие: изменения в развитии клеток и обмене веществ, действие на глаза.

Применение: В медицине, в промышленности

 

Рентгеновские лучи

1895 г. Рентген открыл коротковолновое электромагнитное излучение. За открытие рентгеновских лучей Рентгену в 1901 году была присуждена первая Нобелевская премия по физике, причём нобелевский комитет подчёркивал практическую важность его открытия.

Естественным источником рентгеновского излучения являются некоторые радиоактивные изотопы, Солнце и другие космические объекты

Наиболее распространенным искусственным источником рентгеновского излучения является рентгеновская трубка, в которой это излучение возникает при торможении испускаемых катодом (в виде вольфрамовой нити) электронов, приобретающих при подлете к аноду, представляющий собой пластинку, установленную под определенным углом к нити, большую скорость.

Рентгеновское излучение можно получать также и на ускорителях заряженных частиц.

Длина рентгеновских лучей зависит от скорости движения электронов, а скорость - от величины анодного электрического напряжения.

λ: 10-9 – 10-11 м (в некоторых источниках диапазон волн иной, т.к. точных границ длин нет)

Частота, с которой излучаются рентгеновские волны, достигает

ν: 3•1016 Гц до 1020 Гц

Длина волн рентгеновских лучей измеряется ангстремами. Ангстрем равен одной стомиллионной доле сантиметра.. 1Å= 10-8 см = 10-10 м.

СВОЙСТВА Х-ЛУЧЕЙ:

· Невидимы

· Интерференция, дифракция на кристаллической решётке

· Вызывают определенное свечение некоторых кристаллов (Эффект люминесценции. Рентгеновские лучи способны вызывать у некоторых веществ свечение (флюоресценцию). Этот эффект используется в медицине при рентгеновской съёмке)

· Большая проникающая способность (Рентгеновские лучи могут проникать сквозь вещество, причём различные вещества по-разному их поглощают.)

· Облучение в больших дозах вызывает лучевую болезнь. (Рентгеновское излучение является ионизирующим. Оно воздействует на ткани живых организмов и может быть причиной лучевой болезни и рака. По причине этого при работе с рентгеновским излучением необходимо соблюдать меры защиты.)

Применение

· В медицине (диагностика заболеваний внутренних органов)

· В промышленности (контроль внутренней структуры различных изделий, сварных швов).

· В научных исследованиях (определение структуры кристаллов, молекул белка и длины волны рентгеновских лучей, которое осуществляется на основе свойства рентгеновских лучей дифрагировать на кристаллической решётке).

 

γ-излучение

 

Что можно сказать о длине волны данного излучения по сравнению с остальными?

· коротковолновое электромагнитное излучение с длиной волны λ=3,3* 10-11 м и частотой ν=3•1020 Гц и более

7. Как вы думаете, что является источником γ-излучение?

Источники: атомное ядро (ядерные реакции).

Свойства: Имеет огромную проникающую способность, оказывает сильное биологическое воздействие.

Применение: В медицине, производстве (γ-дефектоскопия).

Из-за малой длины волны волновые свойства гамма-излучения проявляются слабо, и на первый план выступают корпускулярные свойства, в связи с чем его представляют в виде потока гамма-квантов (фотонов). Являясь одним из трех основных видов радиоактивных излучений, гамма-излучение сопровождает распад радиоактивных ядер. Из всех видов радиоактивных излучений гамма-излучение обладает самой большой проникающей способностью. Гамма-излучение возникает не только при радиоактивных распадах ядер, но и при аннигиляции частиц и античастиц, в ядерных реакциях, при торможении быстрых заряженных частиц в веществе (тормозное излучение), при распаде мезонов и входит в состав космического излучения.

 

Домашнее задание: стр.246, п.66, законспектировать в тетрадь.

 

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: