Электромагнитное поле как особый вид материи. Электромагнитные волны

Электромагнитное поле как вид материи

Под электромагнитным полем понимают вид материи, характеризующийся совокупностью взаимосвязанных и взаимообусловливающих друг друга электрического и магнитного полей. Электромагнитное поле может существовать при отсутствии другого вида материи — вещества, характеризуется непрерывным распределением в пространстве (электромагнитная волна в вакууме) и может проявлять дискретную структуру (фотоны). В вакууме поле распространяется со скоростью света, полю присущи характерные для него электрические и магнитные свойства, доступные наблюдению.
Электромагнитное поле оказывает силовое воздействие на электрические заряды. Силовое воздействие положено в основу определения двух векторных величин, описывающих поле: напряженности электрического поля и индукции магнитного поля. На заряд движущийся со скоростью в электрическом поле напряженности и магнитном поле индукции, действует сила Лоренца.

Электромагнитное поле обладает энергией, массой и количеством движения, т. е. такими же атрибутами, что и вещество. Энергия в единице объема, занятого полем в вакууме, равна сумме энергий электрической и магнитной компонент поля и равна здесь, магнитная постоянная, Гн/м. Масса электромагнитного поля в единице объема равна частному от деления энергии поля Wэм на квадрат скорости распространения электромагнитной волны в вакууме, равной скорости света. Несмотря на малое значение массы поля по сравнению с массой вещества, наличие массы поля указывает на то, что процессы в поле являются процессами инерционными. Количество движения единицы объема электромагнитного поля определяется произведением массы единицы объема ноля на скорость распространения электромагнитной волны в вакууме.
Электрическое и магнитное поля могут быть изменяющимися и неизменными во времени. Неизменным в макроскопическом смысле электрическим полем является электростатическое поле, созданное совокупностью зарядов, неподвижных в пространстве и неизменных во времени. В этом случае существует электрическое поле, а магнитное отсутствует. При протекании постоянных токов по проводящим телам внутри и вне их существует электрическое и магнитное поля, не влияющие друг на друга, поэтому их можно рассматривать раздельно. В изменяющемся во времени поле электрическое и магнитное поля, как упоминалось, взаимосвязаны и обусловливают друг друга, поэтому их нельзя рассматривать раздельно.

♦Электромагнитные волны

Электромагнитная волна во многом схожа с механической волной, но есть и различия. Основное отличие состоит в том, что для распространения этой волны не нужна среда. Электромагнитная волна – результат распространения переменного электрического поля и переменного магнитного полей в пространстве, т.е. электромагнитного поля.

I. Электромагнитное поле создается ускоренно движущимися заряженными частицами. Его наличие относительно. Это особый вид материи, является совокупностью переменных электрического и магнитного полей.

II. Электромагнитная волна – распространение электромагнитного поля в пространстве.

 

Схема распространения электромагнитной волны представлена на рисунке. Необходимо запомнить, что вектора напряженности электрического поля, магнитной индукции и скорости распространения волны взаимно перпендикулярны.

 

III.

Этапы создания теории электромагнитной волны и ее практического подтверждения.

· Майкл Фарадей (1831 г.)

Он претворил свой девиз в жизнь. Превратил магнетизм

в электричество:

~ магнитное поле         ~ электрический ток

 

 

·

Максвелл Джеймс Клерк (1864 г.)

 

Ученый-теоретик вывел уравнения, которые носят

его имя. Из этих уравнений следует, что переменное

магнитное поле создает вихревое электрическое поле,

 а оно создает переменное магнитное поле.

Кроме того, в его уравнениях была постоянная величина – это скорость света в вакууме. Т.Е. из этой теории следовало, что электромагнитная волна распространяется в пространстве со скоростью света в вакууме. Поистине гениальная работа была оценена многими учеными того времени, а А. Эйнштейн говорил, что самым увлекательным во время его учения была теория Максвелла.


· Генрих Герц (1887 г.)

Генрих Герц родился болезненным ребенком, но стал очень

сообразительным учеником. Ему нравились все предметы,

 которые изучал. Будущий ученый любил писать стихи,

работать на токарном станке.После окончания гимназии Герц

поступил в высшее техническое училище, но не пожелал быть

узким специалистом и поступил в Берлинский университет,

чтобы стать ученым. После поступления в университет Генрих

Герц стремиться заниматься в физической лаборатории, но для этого необходимо

 было заниматься решением конкурсных задач. И он взялся за решение следующей задачи: обладает ли электрический ток кинетической энергией? Эта работа была рассчитана на 9 месяцев, но будущий ученый решил ее через три месяца. Правда, отрицательный результат, с современной точки зрения неверен. Точность измерения необходимо было увеличить в тысячи раз, что тогда не представлялось возможным.

Еще будучи студентом, Герц защитил докторскую диссертацию на «отлично» и получил звание доктора. Ему было 22 года. Ученый успешно занялся теоретическими исследованиями. Изучая теорию Максвелла, он показал высокие экспериментальные навыки, создал прибор, который называется сегодня антенной и с помощью передающей и приемной антенн осуществил создание и прием. Он понял, что скорость распространения этих волн конечна и равна скорости распространения света в вакууме. После изучения свойств электромагнитных волн он доказал, что они аналогичны свойствам света.

К сожалению, эта робота окончательно подорвала здоровье ученого. Сначала отказали глаза, затем заболели уши, зубы и нос. Вскоре он скончался.

Генрих Герц завершил огромный труд, начатый Фарадеем. Максвелл преобразовал представления Фарадея в математические формулы, а Герц превратил математические образы в видимые и слышимые электромагнитные волны.

Слушая радио, просматривая телевизионные передачи, мы должны помнить об этом человеке.

  А. С. Попов

Не случайно единица частоты колебаний названа в честь Герца, и совсем не случайно первыми словами, переданными русским физиком А.С. Поповым с помощью беспроводной связи, были «Генрих Герц», зашифрованные азбукой Морзе.

Попов совершенствовал приемную и передающую антенну и вначале была осуществлена связь на расстоянии 250 м, затем на 600 м. И в 1899 году ученый установил радиосвязь на расстоянии 20 км, а в 1901 – на 150 км. В 1900 году радиосвязь помогла провести спасательные работы в Финском заливе. В 1901 году итальянский инженер Г. Маркони осуществил радиосвязь через Атлантический океан.

Задание 1. Ознакомиться с материалом и сделать конспект в рабочую тетрадь

Задание 2. Сопоставьте номер вопросаответ

Задание 3. Ответить письменно на вопросы:

1. Что такое электромагнитная волна?

2. Кто создал теорию электромагнитной волны?

3. Кто изучил свойства электромагнитных волн?

4. Что является причиной излучения электромагнитной волны?

5. Где используются электромагнитные волны?





Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: