Регистры процессора: сущность, назначение, типы

Регистр процессора - сверхбыстрая оперативная память внутри процессора, предназначенная прежде всего для хранения промежуточных результатов вычисления.

По типу приёма и выдачи информации различают 2 типа регистров:

  • С последовательным приёмом и выдачей информации — сдвиговые регистры.
  • С параллельным приёмом и выдачей информации — параллельные регистры.

По назначению регистры различаются на:

  • аккумулятор — используется для хранения промежуточных результатов арифметических и логических операций и инструкций ввода-вывода;
  • флаговые — хранят признаки результатов арифметических и логических операций;
  • общего назначения — хранят операнды арифметических и логических выражений, индексы и адреса;
  • индексные — хранят индексы исходных и целевых элементов массива;
  • указательные — хранят указатели на специальные области памяти (указатель текущей операции, указатель базы, указатель стека);
  • сегментные — хранят адреса и селекторы сегментов памяти;

· управляющие — хранят информацию, управляющую состоянием процессора, а также адреса системных таблиц.

Начиная с 80386 процессоры Intel предоставляют 16 основных регистров для пользовательских программ плюс еще 11 регистров для работы с мультимедийными приложениями (MMX(Multimedia Extension)) и числами с плавающей запятой (FPU/NPX (Float Point Unit / Numerical Processor Extension)). Все команды так или иначе изменяют значения регистров, и всегда быстрее и удобнее обращаться к регистру, чем к памяти.

Из реального (но не из виртуального) режима помимо основных регистров доступны так же регистры управления памятью (GDTR, IDTR, TR, LDTR), регистры управления (CR0, CR1 – CR4), отладочные регистры (DR0 – DR7) и машинно-специфичные регистры, но они не применяются для решения повседневных задач.

Регистры общего назначения.

32-битные регистры EAX (аккумулятор), EBX (база), ECX (счетчик), EDX (регистр данных) могут использоваться без ограничений для любых целей – временного хранения данных, аргументов или результатов различных операций. Название регистров происходят от того, что некоторые команды применяют их специальным образом: так, аккумулятор часто необходим для хранения результата действий, выполняемых над двумя операндами, регистр данных в этих случаях получает старшую часть результата, если он не умещается в аккумулятор, регистр счетчик работает как счетчик в циклах и строковых операциях, а регистр-база – при так называемой адресации по базе. Младшие 16 бит каждого их этих регистров применяются как самостоятельные регистры с именами AX, BX, CX, DX. На самом деле в процессорах 8086-80286 все регистры были 16-битными и назывались именно так, а в 32-битные EAX-EDX появились с введением 32-битной архитектуры в 80386. Кроме этого, отдельные байты в 16-юитных регистрах AX – DX тоже могут использоваться как 8-битные регистры и иметь свои имена. Старшие байты этих регистров называются AH, BH, CH, DH, а младшие – AL, BL, CL, DL.

Остальные четыре регистра – ESI (индекс источника), EDI (индекс приемника), EBP (указатель базы), ESP (указатель стека) - имеют более конкретное назначение и применяются для хранения всевозможных временных переменных. Регистры ESI и EDI необходимы в строковых операциях, EBP и ESP – при работе со стеком. Так же как в случае с регистрами EAX – EDX, младшие половины этих четырех регистров называются SI, DI, BP и SP соответственно, и в процессорах до 80386 только они и присутствовали.

(Регистры общего назначения)

Сегментные регистры.

При использовании сегментированных моделей памяти для формирования любого адреса нужны два числа – адрес начала сегмента и смещение искомого байта относительно этого начала (в бессегментной модели памяти flat адреса начала всех сегментов равны). Операционные системы (кроме DOS) могут размещать сегменты, с которыми работает программа пользователя, в разных местах памяти и даже временно записывать их на диск, если памяти не хватает. Так как сегменты способны оказаться где угодно, программа обращается к ним, применяя вместо настоящего адреса начала сегмента 16-битное число, называемое селектором. В процессорах Intel предусмотрены шесть 16-битных регистров – CS, DS, ES, FS, GS, SS, где хранятся селекторы. Это означает, что в любой момент можно изменить параметры, записанные в этих регистрах.

В отличие от DS, ES, GS, FS, которые называются регистрами сегментов данных, CS и SS отвечают за сегменты двух особенных типов – сегмента кода и сегмент стека. Первый содержит программу, исполняющуюся в данный момент, следовательно, запись нового селектора в этот регистр приводит к тому, что далее будет исполнена не следующая по тексту программы команда, а команда из кода, находящегося в другом сегменте, с тем же смещением. Смещение очередной выполняемой команды всегда хранится в специальном регистре EIP (указатель инструкции, 16-битная форма IP), запись в который также приведет к тому, что далее будет исполнена какая-нибудь другая команда. На самом деле все команды передачи управления – перехода, условного перехода, цикла, вызова подпрограммы и т. п. – и осуществляют эту самую запись в CS и EIP.


 


Стек.

Стек – организованный специальным образом участок памяти, который используется для временного хранения переменных, передачи параметров вызываемым подпрограммам и сохранения адреса возврата при вызове процедур и прерываний. Легче всего представить стек в виде стопки листов бумаги (это одно из значений слова «stack» в английском языке) – вы можете класть и забирать листы только с вершины стопки. Поэтому, если записать в стек числа 1, 2, 3, то при чтении они окажутся в обратном порядке – 3, 2, 1. Стек располагается в сегменте памяти, описываемом регистром SS, и текущее смещение вершины стека отражено в регистре ESP, причем во время записи значение этого смещения уменьшается, то есть он «растет вниз» от максимально возможного адреса. Такое расположение стека «вверх ногами» может быть необходимым, к примеру, в бессегментной модели памяти, когда все сегменты, включая сегменты стека и кода, занимают одну и туже область – память целиком. Тогда программа исполняется в нижней области памяти, в области малых адресов, и EIP растет, а стек располагается в верхней области памяти, и ESP уменьшается. При вызове подпрограммы параметры в большинстве случаев помешают в стек, а в EBP записывают текущее значение ESP. Если подпрограмма использует стек для хранения локальных переменных, ESP изменится, но EBP можно будет использовать для того, чтобы считывать значения параметров напрямую из стека (их смещения запишутся как EBP + номер параметра).

(Стек)

Регистр флагов.

Еще один важный регистр, использующийся при выполнении большинства команд, - регистр флагов. Его младшие 16 бит, представлявшие собой весь этот регистр до процессора 80386, называются FLAGS. В E FLAGS каждый бит является флагом, то есть устанавливается в 1 при определенных условиях или установка его в 1 изменяет поведение процессора. Все флаги, расположенные в старшем слове регистра, имеют отношение к управлению защищенным режимом, поэтому будем рассматривать только регистр FLAGS.

(Регистр флагов)

  • CF – флаг переноса. Устанавливается в 1, если результат предыдущей операции не уместился в приемнике и произошел перенос старшего бита или если требуется заем (при вычитании), в противном случае – в 0. Например, после сложения слова 0FFFFh и 1, если регистр, в который надо поместить результат, - слово, в него будет записано 0000h и флаг CF=1.
  • PF – флаг четности. Устанавливается в 1, если младший байт результата предыдущей команды содержит четное число битов, равных 1, и в 0, если нечетное. Это не тоже самое, что делимость на два. Число делится на 2 без остатка, если его самый младший бит равен нулю, и не делится, когда он равен 1.
  • AF – флаг полупереноса или вспомогательного переноса. Устанавливается в 1, если в результате предыдущей операции произошел перенос (или заем) из третьего бита в четвертый. Этот флаг используется автоматически командами двоично-десятичной коррекции.
  • ZF – флаг нуля. Устанавливается в 1, если результат предыдущей команды – ноль.
  • SF – флаг знака. Он всегда равен старшему биту результата.
  • TF – флаг ловушки. Он был предусмотрен для работы отладчиков, не использующих защищенный режим. Установка его в 1 приводит к тому, что после выполнения каждой программной команды управление временно передается отладчику (вызывается прерывание 1 – описание команды INT).
  • IF – флаг прерываний. Сброс этого флага приводит к тому, что процессор перестает обрабатывать прерывания от внешних устройств (описание команды INT). Обычно его сбрасывают на короткое время для выполнения критических участков кода.
  • DF – флаг направления. Он контролирует поведения команд обработки строк: когда он установлен в 1, строки обрабатываются в сторону уменьшения адресов, когда DF=0 – наоборот.
  • OF – флаг переполнения. Он устанавливается в 1, если результат предыдущей арифметической операции над числами со знаком выходит за допустимые для них пределы. Например, если при сложении двух положительных чисел получается число со старшим битом, равным единице, то есть отрицательное, и наоборот.

 

Флаги IOPL (уровень привилегий ввода-вывода) и NT (вложенная задача) применяются в защищенном режиме.


 



Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: