Поперечно-полосатая мышечная ткань

МЫШЕЧНЫЕ ТКАНИ

Мышечные ткани объединяются в единую группу по способности к сокращению. Несмотря на морфофункциональное разнообразие, они всегда содержат специализированные органоиды – миофибриллы, которые являются специализированным производным микрофиламентозного компонента цитоскелета. Мышечные ткани обеспечивают поддержание позы и движение организма, а также сокращение внутренних органов. Эти ткани тесно связаны с нервной системой, которая управляет их работой. Наиболее распространен морфофизиологическй принцип классификации мышечных тканей:

Морфофизиологическая классификация мышечных тканей

  Гладкая Скелетная Сердечная
Локализация внутренние органы скелетная мускулатура сердце
Строение клеточное симпластическое клеточное
Миофибриллы без исчерченности исчерченные исчерченные
Источник развития спланхнотом миотомы сомитов спланхноплевра
Сокращения непроизвольные произвольные непроизвольные

Н. Г. Хлопин предложил расширенную классификацию мышечных тканей, главным критерием которой является их происхождение в эмбриогенезе:

Гистогенетическая классификация мышечных тканей

Эктодермальная ткань Мезодермальная ткань
эпидермальная нейральная спланхнотомная миотомная целомическая
гладкие мышечные клетки экзокринных желез гладкие мышечные клетки радужной оболочки гладкие мышечные клетки во внутренних органах и сосудах поперечно-полосатые мышечные волокна поперечно-полосатые сердечные мышечные клетки

Структурной единицей поперечно-полосатой (скелетной, или соматической) мышечной ткани служит многоядерный симпласт - мышечное волокно, или мион. Он имеет форму вытянутого цилиндра диаметром несколько сотен микрометров и длиной до 10 см. Мышечное волокно покрыто сарколеммой, состоящей из двух слоев. Внутренний слой представлен плазмолеммой толщиной около 10 нм. Наружный слой образован базальной пластинкой толщиной 30-50 нм, которая отстоит от плазмолеммы на 15-25 нм и связана с коллагеновыми волокнами окружающей соединительной ткани. Между внутренним и наружным слоями сарколеммы встречаются малодифференцированные одноядерные клетки – миосателлиты, которые обеспечивают восстановление миона после повреждения. Соединительнотканная оболочка миона называется эндомизием. Группы мионов имеют дополнительную оболочку – перимизий, а вся мышца покрыта снаружи эпимизием, или фасцией. Соединительнотканные оболочки мышц содержат кровеносные сосуды и капилляры, а также нервные окончания.

В цитоплазме (саркоплазме) миона непосредственно под плазмолеммой находится множество ядер, в центре расположены пучки миофибрилл, между ними - многочисленные митохондрии, развитая гладкая плазматическая сеть и другие органоиды.

Сократительные элементы миона представлены миофибриллами, которые заполняют большую часть его объема. Диаметр миофибриллы составляет 0,5-2 мкм, а длина совпадает с длиной миона. Миофибриллы обладают поперечной исчерченностью, что проявляется в чередовании по их длине темных анизотропных и светлых изотропных участков. Анизотропный диск (A-диск) обладает двойным лучепреломлением - способностью расщеплять свет на два ортогонально поляризованных луча с различными коэффициентами преломления. Изотропный диск (I-диск) такой способностью не обладает. Длина A-диска составляет 1,5–2 мкм, тогда как длина I-диска варьирует в пределах 0,7–1,4 мкм в зависимости от стадии сокращения миона. Оптические свойства миофибриллы определяются высокой регулярностью ее на молекулярном уровне.

Структурно-функциональной единицей миофибриллы является саркомер. Его границами служат Z-полоски (телофрагмы), которые расположены перпендикулярно оси миофибриллы в середине I-диска. В середине А-диска находится несколько более светлая H-полоска. К состоящей из десмина Z-полоске с помощью a-актинина прикреплены тонкие протофибриллы толщиной 5-7 нм. В А-диске локализованы толстые протофибриллы диаметром 10-25 нм. Пространственное расположение протофибрилл таково, что каждая толстая протофибрилла окружена шестью тонкими протофибриллами.

Тонкая протофибрилла представляет собой спираль, которая образована двумя нитями фибриллярного актина. Каждая из нитей состоит из молекул глобулярного актина диаметром около 5 нм и молекулярной массой 45 кД. В бороздке между нитями актина находятся две переплетенные нити белка тропомиозина. К концам молекул тропомиозина дополнительно прикреплены молекулы глобулярного белка тропонина, состоящие из трех субъединиц.Длина тонких протофибрилл достигает 1 мкм.

Толстая протофибрилла образована механохимическим белком миозином. Молекула миозина имеет форму клюшки для игры в гольф. Размер ее равен 150 ´ 3 нм, молекулярная масса – 460 кД. Она состоит из четырех субъединиц, образующих двойную головку, шейку и длинный хвост. Молекула миозина способна связывать кальций и, затрачивая АТФ, изменять взаимное расположение субъединиц. В состав толстой протофибриллы входит 300 молекул миозина, которые разделены на две группы с противоположной ориентацией. Длина миозиновой протофибриллы достигает 1,5-2 мкм.

Таким образом, А-диск содержит как тонкие, так и толстые протофибриллы, тогда как I-диск состоит только из тонких протофибрилл. В состав саркомера входят ½ I-диска + A-диск + ½ I-диска.

Сокращение миофибриллы согласно теории скользящих нитей обеспечивается взаимодействием актина и миозина, при котором тонкие нити втягиваются между толстыми нитями. В результате этого наблюдается сжатие I-диска. Процесс скольжения запускается кальцием и обеспечивается периодическими конформационными изменениями молекул миозина при взаимодействии их с тонкими протофибриллами.

Трофические элементы миона представлены саркоплазматической сетью, митохондриями, включениями запасных питательных веществ и растворенным в гиалоплазме дыхательным белком миоглобином. Саркоплазматическая сеть состоит из каналов Т-системы и цистерн, каналов и пузырьков L-системы. Каналы Т-системы представляют собой глубокие и узкие инвагинации плазмолеммы миона, которые доходят до пучков миофибрилл на уровне границы между дисками. Мембранные структуры L-системы образованы гладкой плазматической сетью, которая в мионе служит резервуаром для кальция. Мембраны каналов Т-системы на своих концах непосредственно примыкают к мембранам цистерн L-системы, формируя “ триаду ”. По приходе нервного импульса по каналу Т-системы волна деполяризации распространяется в триаде на мембраны L-системы. Это вызывает быстрый выход кальция в гиалоплазму, где он достигает миофибрилл, связывается головками миозина и запускает процесс сокращения. После сокращения кальций откачивается в L-систему с помощью встроенных в ее мембраны кальциевых насосов.

Сокращение миона требует расхода большого количества энергии, которая вырабатывается расположенными вокруг миофибрилл митохондриями. Для обеспечения непрерывной работы митохондрий в гиалоплазме содержится миоглобин, который запасает кислород и отдает его в условиях гипоксии. Особенно много миоглобина у морских млекопитающих, способных нырять на большую глубину.

Среди мионов существует определенная функциональная специализация, которая связана с характером выполняемой мышцами работы. Например, у человека и млекопитающих выделяютбыстрые, но менее выносливые белые мионы и медленные, но более пластичные красные мионы.Белые и красные мионы млекопитающих

Свойство Белые мионы Красные мионы
цвет белый красный
диаметр большой небольшой
миоглобин мало много
митохондрии мало много
липиды мало много
гликоген много мало
кровоснабжение слабое сильное
сокращение сильное и быстрое слабое и медленное

Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: