Устойчивость и репарация генетического материала

Классификация мутаций

Мутагенные факторы

Факторы, вызывающие мутации называются мутагенными факторами (мутагенами) и подразделяются на:

1. Физические;

2. Химические;

3. Биологические.

К физическим мутагенным факторам относятся различные виды излучений, температура, влажность и др. Наиболее сильное мутагенное действие оказывает ионизирующее излучение – рентгеновские лучи, α-, β-, γ- лучи. Они обладают большой проникающей способностью.

При действии их на организм они вызывают:

а) ионизацию тканей – образование свободных радикалов (ОН) или (Н) из воды, находящейся в тканях. Эти ионы вступают в химическое взаимодействие с ДНК, расщепляют нуклеиновую кислоту и другие органические вещества;

б) ультрафиолетовое излучение характеризуется меньшей энергией, проникает только через поверхностные слои кожи и не вызывает ионизацию тканей, но приводит к образованию димеров (химические связи между двумя пиримидиновыми основаниями одной цепочки, чаще Т-Т). Присутствие димеров в ДНК приводит к ошибкам при ее репликации, нарушает считывание генетической информации;

в) разрыв нитей веретена деления;

г) нарушение структуры генов и хромосом, т.е. образование генных и хромосомных мутаций.

К химическим мутагенам относятся:

- природные органические и неорганические вещества (нитриты, нитраты, алкалоиды, гормоны, ферменты и др.);

- синтетические вещества, ранее не встречавшиеся в природе (пестициды, инсектициды, пищевые консерванты, лекарственные вещества).

- продукты промышленной переработки природных соединений – угля, нефти.

Механизмы их действия:

а) дезаминирование – отщепление аминогруппы от молекулы аминокислот;

б) подавление синтеза нуклеиновых кислот;

в) замена азотистых оснований их аналогами.

Химические мутагены вызывают преимущественно генные мутации и действуют в период репликации ДНК.

К биологическим мутагенам относятся:

- Вирусы (гриппа, краснухи, кори)

- Невирусные паразитические организмы (грибы, бактерии, простейшие, гельминты)

Механизмы их действия:

а) вирусы встраивают свою ДНК в ДНК клеток хозяина.

б) продукты жизнедеятельности паразитов-возбудителей болезней действуют как химические мутагены.

Биологические мутагены вызывают генные и хромосомные мутации.

Различают следующие основные типы мутаций:

1. По способу возникновения их подразделяют на спонтанные и индуцированные.

Спонтанные – происходят под действием естественных мутагенных факторов внешней среды без вмешательства человека. Они возникают в условиях естественного радиоактивного фона Земли в виде космического излучения, радиоактивных элементов на поверхности земли.

Индуцированные мутации вызываются искусственно воздействием определенных мутагенных факторов.

2. По мутировавшим клеткам мутации подразделяются на генеративные и соматические.

Генеративные – происходят в половых клетках, передаются по наследству при половом размножении.

Соматические – происходят в соматических клетках и передаются только тем клеткам, которые возникают из этой соматической клетки. Они не передаются по наследству.

3. По влиянию на организм:

Отрицательные мутации – летальные (несовместимые с жизнью); полулетальные (снижающие жизнеспособность организма); нейтральные (не влияющие на процессы жизнедеятельности); положительные (повышающие жизнеспособность). Положительные мутации возникают редко, но имеют большое значение для прогрессивной эволюции.

4. По изменениям генетического материала мутации подразделяются на геномные, хромосомные и генные.

Геномные мутации – это мутации, вызванные изменением числа хромосом. Могут появляться лишние гомологичные хромосомы. В хромосомном наборе на месте двух гомологичных хромосом оказываются три – это трисомия. В случае моносомии наблюдается утрата одной хромосомы из пары. При полиплоидии происходит кратное гаплоидному увеличение числа хромосом. Еще один вариант геномной мутации – гаплоидия, при которой остается только одна хромосома из каждой пары.

Хромосомные мутации связаны с нарушением структуры хромосом. К таким мутациям относятся утраты участков хромосом (делеции), добавление участков (дупликация) и поворот участка хромосом на 180° (инверсия).

Генные мутации, при которых изменения происходят на уровне отдельных генов, т.е. участков молекулы ДНК. Это может быть утрата нуклеотидов, замена одного основания на другое, перестановка нуклеотидов или добавление новых.

Устойчивость к изменениям генетического материала обеспечивается:

1. Диплоидным набором хромосом.

2. Двойной спиралью ДНК.

3. Вырожденностью (избыточностью) генетического кода

4. Повтором некоторых генов.

5. Репарацией нарушений структуры ДНК

Наличие механизмов репарации – обязательное условие существования биологических существ.

Репарация генетического материала это процесс, обеспечивающий восстановление поврежденной структуры молекулы ДНК.

В ДНК клетки ежедневно происходит множество случайных изменений.

Большинство эффективно исправляются (репарируются) с помощью специальных ферментных систем.

Впервые репарация молекулы ДНК была установлена в 1948 году. А в 1962 году был описан один из способов репарации – световая репарация или фотореактивация.

Было установлено, что при ультрафиолетовом облучении вирусов-фагов, бактерий и простейших наблюдается резкое снижение их жизнедеятельности, даже гибель.

Если воздействовать на них видимым светом, то выживаемость их значительно увеличивается.

Оказалось, что под действием ультрафиолета в молекуле ДНК образуются димеры (химические связи между двумя основаниями одной цепочки, чаще Т-Т), образование димеров препятствует считыванию информации.

Видимый свет активирует ферменты, разрушающие димеры.

Второй способ репарации – темновая репарация, была изучена в 50-е годы ХХ века.

Темновая репарация протекает в четыре стадии с участием четырех групп ферментов. Ферменты образовались в ходе эволюции и направлены на поддержание стабильности генетической информации клетки.

1. Фермент эндонуклеаза находит поврежденный участок и рядом с ним разрывает нить ДНК.

2. Фермент эктонуклеаза «вырезает» (удаляет) поврежденный участок.

3. ДНК-полимераза по принципу комплементарности синтезирует фрагмент ДНК на месте разрушенного.

4. Лигаза «сшивает» синтезированный фрагмент с основной нитью ДНК.

Доказана возможность репарации ДНК при повреждении обеих ее нитей. При этом информация может быть получена с и-РНК (фермент ревертаза).


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: