По характеру проявления во времени бывают погрешности случайные, систематические и промахи

Рис.1 --- в конспект

В Международном бюро мер и весов хранятся международные эталоны единиц физических величин, по которым периодически производятся сличения национальных эталонов. Например, эталоны килограмма и метра сличаются раз в 25 лет.

По своему назначению вторичные эталоны делятся на эталоны-копии, эталоны сравнения, эталоны-свидетели и рабочие эталоны.

Если эталон воспроизводит единицу с наивысшей точностью, он называется первичным.

Первичные и специальные эталоны, утвержденные Госстандартом России в качестве исходных, называются государственными эталонами.

Для выполнения большого объема поверочных работ и для обеспечения сохранности государственных эталонов в метрологической практике широко используются вторичные эталоны, размеры которых передаются от первичных эталонов.

Эталон-копия предназначен для передачи размера единицы рабочим эталонам. Обычно эталоны-копии создаются при большом количестве поверочных работ с целью предохранения первичного или специального эталона от преждевременного износа.

Эталон сравнения применяется для сличения эталонов, которые по каким-либо причинам не могут быть непосредственно сличены друг с другом.

Эталон-свидетель применяется для проверки сохранности государственного эталона и для его замены в случае потери или утраты.

Рабочий эталон предназначен для хранения единицы и передачи ее размера образцовым средствам измерений высшей точности (измерительным приборам высокой точности и наиболее точным рабочим мерам).

Образцовые средства измерений представляют собой утвержденный в установленном порядке комплекс мер, измерительных приборов и измерительных преобразователей, прошедших метрологическую аттестацию и предназначенных для поверки и градуировки по ним других средств измерений. На образцовые средства измерений выдаются свидетельства, в которых указаны метрологические параметры и разряд по общегосударственной поверочной схеме (рисунок 1).

Рис. 1 – Вариант передачи информации о размере единицы

Погрешности измерений

Любое измерение можно считать законченным, если найден не только результат измерения, но и оценена его погрешность.

Погрешность результата измерений - отклонение результата измерения от истинного (действительного) значения измеряемой величины.

Погрешность средства измерения – это разность между показанием средства измерения и истинным (действительным) значением измеряемой величины.

Эти два понятия: погрешность результата измерений и погрешность средства измерения во многом близки друг к другу. Погрешности результатов измерений и средств измерения классифицируются по одинаковым признакам: по характеру проявления; по способу выражения; по отношению к условиям применения. В настоящее время принята следующая классификация погрешностей.

Рис. – в конспект

Случайная погрешность измерения (Δ0) - составляющая погрешности результата измерения, изменяющаяся случайным образом (по знаку, значению) при повторных измерениях одной и той же физической величины, проведенных с одинаковой тщательностью. В проявлениях таких погрешностей не наблюдается какой-либо закономерности, они обнаруживаются при повторных измерениях одной и той же величины в виде некоторого разброса результатов. Случайные погрешности неизбежны, неустранимы и всегда присутствуют в результате измерения. Описание случайных погрешностей возможно только на основе теории случайных процессов и математической статистики. Случайные погрешности уменьшаются с увеличением количества измерений.

Систематическая погрешность измерения (Δ0) - составляющая погрешности результата измерения, остающаяся постоянной или закономерно изменяющаяся при повторных измерениях одной и той же физической величины. В зависимости от характера изменения систематические погрешности подразделяют на постоянные и переменные, которые в свою очередь могут быть прогрессивные, периодические или изменяющиеся по сложному закону. Погрешности, изменяющиеся по сложному закону, происходят вследствие совместного действия нескольких систематических погрешностей. Такие погрешности выявляют детальным анализом их возможных источников (например, неточное нанесение отметок на шкалу или деформация стрелки) и уменьшают введением соответствующей поправки, применением более точных средств измерений, калибровкой средств измерений.

Грубая погрешность (промах) - погрешность результата отдельного измерения, входящего в ряд измерений, которая для данных условий резко отличается от остальных результатов этого ряда. В случае однократного измерения обнаружить промах нельзя. При многократных измерениях грубые погрешности выявляют и исключают в процессе обработки результатов измерений.

По форме выражения погрешности разделяют на абсолютную, относительную и приведенную.

Абсолютная погрешность измерения (Δ) - погрешность измерения, выраженная в единицах измерения.

Абсолютная погрешность определяется по формуле:

Δ = Xi – X0,

где Δ – погрешность измерения;

Хi – значение измеряемой физической величины, найденное с помощью средства измерений;

Х0 – действительное значение измеряемой величины.

Разновидностью абсолютной погрешности является предельная погрешность – максимальная погрешность, допускаемая для данной измерительной задачи. Абсолютная погрешность не может в полной мере служить показателем точности. Например, при измерении величин 10 мм и 100 мм получена одинаковая абсолютная погрешность Δ = 0,5 мм, но качество измерения будет различно. Для сравнения качества измерения используют относительную погрешность.

Относительная погрешность (δ) – погрешность измерения, выраженная отношением абсолютной погрешности измерения к действительному или измеренному значению измеряемой величины.

Относительная погрешность определяется по формуле:

где δ – относительная погрешность, выраженная в процентах.

Приведенная погрешность средства измерения (γ) – относительная погрешность, выраженная отношением абсолютной погрешности средства измерения к условно принятому значению величины. Условно принятое значение называют нормирующим значением и часто за такое условно принятое значение принимают верхний предел измерений. Приведенную погрешность обычно выражают в процентах:

где γ – приведенная погрешность, выраженная в процентах;

XN – нормирующее значение.

По источнику возникновения (или по причине возникновения) может быть инструментальная погрешность, погрешность метода измерений и погрешность субъективная.

Погрешность результата каждого конкретного измерения складывается из составляющих, обязанных своим происхождением различным факторам и источникам. Обязательными компонентами любого измерения являются средство измерения, в котором реализован определенный метод измерения, а также оператор (человек), проводящий измерения. Несовершенство каждого из этих компонентов приводит к появлению своей составляющей погрешности результата. При этом различают следующие погрешности:

Инструментальная погрешность – составляющая, обусловленная погрешностью применяемого средства измерений. Очевидно, что каждому из приборов, использованных при измерении, присущи определенные погрешности, причем в общей погрешности прибора может присутствовать и систематическая и случайная составляющая, которые окажут свое влияние на результат измерения.

Погрешность метода измерений – составляющая систематической погрешности измерений, обусловленная несовершенством реализованного метода измерения. Вследствие упрощений, принятых в уравнениях для измерений, нередко возникают существенные погрешности, для компенсации которых следует вводить поправки. Погрешность метода иногда называют теоретической погрешностью. При некоторых обстоятельствах погрешность метода измерения может проявляться как случайная;

Субъективная погрешность измерения – составляющая систематической погрешности, обусловленная индивидуальными особенностями оператора. Встречаются операторы, которые систематически опаздывают (или опережают) снимать отсчеты показаний средств измерений. Иногда субъективную погрешность называют личной погрешностью. В результате отсутствия правильных навыков работы с приборами экспериментатор может внести в результат измерения личную составляющую погрешности из-за неточности отсчета доли деления по шкале, невнимательности и др.

По условиям возникновения погрешность может быть основной и дополнительной.

Как уже неоднократно повторялось, на результат измерения влияют условия измерения. Нормальные условия измерений - это условия, характеризуемые совокупностью значений или областей значений влияющих величин, при которых изменением результата измерений пренебрегают вследствие малости. Нормальные условия измерений устанавливаются в нормативных документах на средства измерений конкретного типа и они характеризуются номинальными значениями влияющих величин. Некоторые номинальные значения нормальных условий измерения для ряда влияющих величин приведены в табл. 2.

Таблица 2 - Некоторые номинальные значения влияющих величин при нормальных условиях

Влияющая величина Значение
Температура для всех видов измерений, °С (К) 20 (293)
Давление окружающего воздуха для линейных, угловых измерений, измерений массы, силы света и в других областях кроме указанных выше, кПА (мм. рт.ст.) 101,3 (760)
Относительная влажность воздуха для линейных, угловых измерений, измерений массы, %  

Для данных номинальных значений выделяют нормальную область значений влияющих величин, рабочую область и предельные условия измерений, которые устанавливают возможные колебания указанных номинальных значений, когда в результате измерения присутствует только основная погрешность средства измерения.

Основная погрешность средства измерения – погрешность средства измерения, применяемого при нормальных условиях, при которых величины, влияющие на погрешность данного средства измерения, находятся в области нормальных значений.

Дополнительная погрешность средства измерения – составляющая погрешности средства измерения, возникающая дополнительно к основной погрешности вследствие отклонения какой-либо из влияющих величин от нормального ее значения или нормальной области значений. Для оценивания дополнительных погрешностей в документации на средство измерений обычно указывают нормы изменения показаний при выходе условий измерения за пределы нормальных.

По характеру изменения измеряемой величины различают статическую и динамическую погрешности средства измерения.

Статическая погрешность – погрешность средства измерения, применяемого при измерении физической величины, принимаемой за неизменную.

Динамическая погрешность – погрешность средства измерений, возникающая при измерении изменяющейся физической величины.

В основе современных подходов к оцениванию погрешностей лежат принципы, обеспечивающие выполнение требований единства измерений.

Единство измерений – состояние измерений, характеризующееся тем, что их результаты выражаются в узаконенных единицах, а погрешности результатов известны и с заданной вероятностью не выходят за установленные пределы измерений.

Для исследования и оценивания погрешность описывается с помощью определенной модели (систематическая, случайная, методическая, инструментальная и др.). На выбранной модели определяют характеристики, пригодные для количественного выражения тех или иных свойств. Выбор модели погрешности обусловлен сведениями об ее источниках как априорных, так и полученными в ходе измерительного эксперимента.

Оценить результат измерения – это значит приписать ему погрешность с заданной доверительной вероятностью.

В основе модели случайных погрешностей лежит теория вероятно­стей и методы математической статистики. Из этого следует, что погрешности можно только оценить с некоторой вероятностью. Оценку случайной погрешно­сти и определение интервала, внутри которого с заданной вероятно­стью лежит истинное значение физической величины, проводят по ре­зультатам ее многократных измерений.

Наиболее близким к истинному значению измеряемой величины является среднее арифметическое ряда отдельных измерений:

где n – количество измерений; Xi – результат i–го измерения.

В теории погрешностей доказывается, что случайная погреш­ность среднего арифметического может быть использована в каче­стве оценочного значения абсолютной погрешности. Окончательный результат измерений записывается как:

где ± ε – доверительный интервал случайной погрешности;

Р – доверительная вероятность, показывающая с какой вероятностью истинное значение величины X находится внутри доверительного интервала.

Доверительные границы ε(Р) случайной погрешности результата измерений, соответствующие доверительной вероятности Р, находят по формуле

где t – коэффициент Стьюдента, определяемый по таблице распределения Стьюдента по заданной доверительной вероятности Р и числу наблюдений n (приложение 3);

Sk – среднее квадратичное отклонение среднего арифметического.

Среднее квадратичное отклонение среднего арифметического

Средства измерений и их погрешности

Средство измеренийтехническое средство, предназначенное для измерений, имеющее нормированные метрологические характеристики, воспроизводящее и (или) хранящее единицу физической величины, размер которой принимают неизменным (в пределах установленной погрешности) в течение известного интервала времени.

Законом РФ «Об обеспечении единства измерений» средство измерений определено как техническое средство, предназначенное для измерений. Формальное решение об отнесении технического средства к средствам измерений принимает Федеральное агентство по техническому регулированию и метрологии.

Классификация средств измерений

По техническому назначению:

· мера физической величины — средство измерений, предназначенное для воспроизведения и (или) хранения физической величины одного или нескольких заданных размеров, значения которых выражены в установленных единицах и известны с необходимой точностью (гиря, песочные часы, измерительный генератор);

· измерительный прибор — средство измерений, предназначенное для получения значений измеряемой физической величины в установленном диапазоне (барометр, амперметр, омметр);

· измерительныйпреобразователь — техническое средство с нормативными метрологическими характеристиками, служащее для преобразования измеряемой величины в другую величину или измерительный сигнал, удобный для обработки, хранения, дальнейших преобразований, индикации или передачи (термопара, АЦИП, измерительный трансформатор);

· измерительная установка (измерительная машина) — совокупность функционально объединенных мер, измерительных приборов, измерительных преобразователей и других устройств, предназначенная для измерений одной или нескольких физических величин и расположенная в одном месте

· измерительная система — совокупность функционально объединенных мер, измерительных приборов, измерительных преобразователей, ЭВМ и других технических средств, размещенных в разных точках контролируемого объекта и т. п. с целью измерений одной или нескольких физических величин, свойственных этому объекту, и выработки измерительных сигналов в разных целях;

· измерительно-вычислительный комплекс — функционально объединенная совокупность средств измерений, ЭВМ и вспомогательных устройств, предназначенная для выполнения в составе измерительной системы конкретной измерительной задачи.

По степени автоматизации:

автоматические;

автоматизированные;

ручные.

По стандартизации средств измерений:

стандартизированные;

нестандартизированные.

По положению в поверочной схеме:

эталоны;

рабочие средства измерений.

По значимости измеряемой физической величины:

основные средства измерений той физической величины, значение которой необходимо получить в соответствии с измерительной задачей;

вспомогательные средства измерений той физической величины, влияние которой на основное средство измерений или объект измерений необходимо учитывать для получения результатов измерений требуемой точности.

Метрологические характеристики средств измерений

Согласно ГОСТ 8.009-84, метрологическими характеристиками называются технические характеристики, описывающие эти свойства и оказывающие влияние на результаты и на погрешности измерений, предназначенные для оценки технического уровня и качества средства измерений, для определения результатов измерений и расчетной оценки характеристик инструментальной составляющей погрешности измерений.

Характеристики, устанавливаемые нормативно-техническими документами, называются нормируемыми, а определяемые экспериментально — действительными

.

Ниже приведена номенклатура метрологических характеристик:

· Характеристики, предназначенные для определения результатов измерений):

Функция преобразования измерительного преобразователя, а также измерительного прибора с неименованной шкалой;

Значение однозначной меры;

Цена деления шкалы измерительного прибора или многозначной меры;

Вид выходного кода для цифровых средств измерений;

· Характеристики погрешностей средств измерений;

· Характеристики чувствительности средств измерений к влияющим величинам;

· Динамические погрешности средств измерений (переходная характеристика, АЧХ, АФХ и т.д.)

Поверка и сертификация средств измерений

В Российской Федерации средства измерений используются для определения величин, единицы которых допущены в установленном порядке к применению в Российской Федерации и должны соответствовать условиям эксплуатации и установленным требованиям.

Решения об отнесении технического устройства к средствам измерений, внесении его в государственный реестр средств измерений, допущенных к использованию в Российской Федерации и об установлении интервалов между поверками принимает Федеральное агентство по техническому регулированию и метрологии.

На средство измерений утверждённого типа оформляется свидетельство (ранее - сертификат) об утверждении типа средств измерений.

Поверке подлежат только средства измерений, внесенные в государственный реестр средств измерений, допущенных к использованию в Российской Федерации. Остальные технические устройства подлежат калибровке. После процедуры калибровки оформляется сертификат калибровки.

Поверка средств измеренийсовокупность операций, выполняемых органами Государственной метрологической службы (другими уполномоченными на то органами, организациями) с целью определения и подтверждения соответствия характеристик средства измерения установленным требованиям.

Поверка средства измерений заключается в определении погрешностей средства измерений и в установлении его пригодности к применению. После процедуры поверки оформляется свидетельство о поверке.

Межгосударственным советом по стандартизации, метрологии и сертификации (стран СНГ) установлены следующие виды поверки:

· Первичная поверка — поверка, выполняемая при выпуске средства измерений из производства или после ремонта, а также при ввозе средства измерений из-за границы партиями, при продаже.

· Периодическая поверка — поверка средств измерений, находящихся в эксплуатации или на хранении, выполняемая через установленные межповерочные интервалы времени.

· Внеочередная поверка — Поверка средства измерений, проводимая до наступления срока его очередной периодической поверки.

· Инспекционная поверка — поверка, проводимая органом государственной метрологической службы при проведении государственного надзора за состоянием и применением средств измерений.

· Комплектная поверка — поверка, при которой определяют метрологические характеристики средства измерений, присущие ему как единому целому.

· Поэлементная поверка — поверка, при которой значения метрологических характеристик средств измерений устанавливаются по метрологическим характеристикам его элементов или частей.

· Выборочная поверка — поверка группы средств измерений, отобранных из партии случайным образом, по результатам которой судят о пригодности всей партии.

· Экспертная поверка — проводится при возникновении разногласий по вопросам, относящимся к метрологическим характеристикам, исправности средств измерений и пригодности их к применению.

Калибровка средств измерений - совокупность операций, выполняемых с целью определения и подтверждения действительных значений метрологических характеристик и (или) пригодности к применению средства измерений, не подлежащего государственному метрологическому контролю и надзору.

Правовые основы метрологической деятельности

Конституция Российской Федерации (статья 71) устанавливает, что в ведении Российской Федерации находятся стандарты, эталоны, метрическая система и исчисление времени. Таким образом, эти положения Конституции РФ закрепляют централизованное руководство основными вопросами законодательной метрологии (единицы величин, эталоны и связанные с ними другие метрологические основы).

Федеральный закон от 26 июня 2008 г. N 102-ФЗ "Об обеспечении единства измерений", устанавливающий правовые основы обеспечения единства измерений,

регулирует отношения, возникающие при выполнении измерений, установлении и соблюдении требований к измерениям, единицам величин, эталонам единиц величин, стандартным образцам, средствам измерений, применении стандартных образцов, средств измерений, методик (методов) измерений, а также при осуществлении деятельности по обеспечению единства измерений, предусмотренной законодательством Российской Федерации об обеспечении единства измерений, в том числе при выполнении работ и оказании услуг по обеспечению единства измерений.

Нормативные документы государственной системы обеспечения единства измерений (ГСИ ) устанавливают основные требования в области метрологического обеспечения.

СТАНДАРТИЗАЦИЯ

Стандартизация — это деятельность по установлению правил и характеристик в целях их добровольного многократного использования, направленная на достижение упорядоченности в сферах производства и обращения продукции и повышение конкурентоспособности продукции, работ или услуг.

Стандартизация — также это деятельность по установлению норм, правил и характеристик в целях обеспечения безопасности продукции, работ и услуг для окружающей среды, жизни, здоровья и имущества, технической и информационной совместимости, а также взаимозаменяемости продукции; качества продукции, работ и услуг в соответствии с уровнем развития науки, техники и технологии; единства измерений; экономии всех видов ресурсов; безопасности хозяйственных объектов с учётом риска возникновения природных и техногенных катастроф и других чрезвычайных ситуаций; обороноспособности и мобилизационной готовности страны.

Стандарт — документ, в котором в целях добровольного многократного использования устанавливаются характеристики продукции, правила осуществления и характеристики процессов проектирования (включая изыскания), производства, строительства, монтажа, наладки, эксплуатации, хранения, перевозки, реализации и утилизации, выполнения работ или оказания услуг.

Стандарт также может содержать правила и методы исследований (испытаний) и измерений, правила отбора образцов, требования к терминологии, символике, упаковке, маркировке или этикеткам и правилам их нанесения.[1] Некоторые стандарты в России могут иметь статус обязательных к применению на время перехода к системе технических регламентов.

Знак соответствия - обозначение, служащее для информирования приобретателей о соответствии объекта сертификации требованиям системы добровольной сертификации или национальному стандарту;

1)код органа, выдавшего разрешение на право применения знака соответствия национальным стандартам

2)обозначение национального стандарта

Целями стандартизации являются:

· повышение уровня безопасности жизни и здоровья граждан, имущества физических и юридических лиц, государственного и муниципального имущества, объектов с учётом риска возникновения чрезвычайных ситуаций природного и техногенного характера, повышение уровня экологической безопасности, безопасности жизни и здоровья животных и растений;

· обеспечение конкурентоспособности и качества продукции (работ, услуг), единства измерений, рационального использования ресурсов, взаимозаменяемости технических средств (машин и оборудования, их составных частей, комплектующих изделий и материалов), технической и информационной совместимости, сопоставимости результатов исследований (испытаний) и измерений, технических и экономико-статистических данных, проведения анализа характеристик продукции (работ, услуг), исполнения государственных заказов, добровольного подтверждения соответствия продукции (работ, услуг);

· содействие соблюдению требований технических регламентов;

· создание систем классификации и кодирования технико-экономической и социальной информации, систем каталогизации продукции (работ, услуг), систем обеспечения качества продукции (работ, услуг), систем поиска и передачи данных, содействие проведению работ по унификации.

Стандартизация осуществляется в соответствии с принципами:

· добровольного применения документов в области стандартизации;

· максимального учёта при разработке стандартов законных интересов заинтересованных лиц;

· применения международного стандарта как основы разработки национального стандарта, за исключением случаев, если такое применение признано невозможным вследствие несоответствия требований международных стандартов климатическим и географическим особенностям Российской Федерации, техническим и (или) технологическим особенностям или по иным основаниям либо Российская Федерация в соответствии с установленными процедурами выступала против принятия международного стандарта или отдельного его положения;

· недопустимости создания препятствий производству и обращению продукции, выполнению работ и оказанию услуг в большей степени, чем это минимально необходимо для выполнения целей стандартизации;

· недопустимости установления таких стандартов, которые противоречат техническим регламентам;

· обеспечения условий для единообразного применения стандартов.

Формы стандартизации

Симплификация – форма стандартизации, заключающаяся в простом сокращении числа применяемых при разработке изделий до количества, технически и экономически целесообразного.

Унификация – рациональное уменьшение числа типов, видов и размеров объектов одинакового функционального назначения.

В настоящее время унификация является наиболее распространенной и эффективной формой стандартизации. Конструирование аппаратуры, машин и механизмов с применением унифицированных элементов позволяет не только сократить сроки разработки и уменьшить стоимость изделий, но и повысить их надежность, сократить сроки технологической подготовки и освоения производства.

Типизация – это разновидность стандартизации, заключающаяся в разработке и установлении типовых решений (конструктивных, технологических, организационных и т. п.) на основе наиболее прогрессивных методов и режимов работы.

Агрегатирование – метод создания новых машин, приборов и другого оборудования путем компоновки конечного изделия из ограниченного набора стандартных и унифицированных узлов и агрегатов, обладающих геометрической и функциональной взаимозаменяемостью.

В технике стандартизация ведет к снижению себестоимости продукции, поскольку:

· позволяет экономить время и средства за счет применения уже разработанных типовых ситуаций и объектов;

· повышает надежность изделия или результатов расчетов, поскольку применяемые технические решения уже неоднократно проверены на практике;

· упрощает ремонт и обслуживание изделий, так как стандартные узлы и детали — взаимозаменяемые (при условии, что сборка осуществлялась без пригоночных операций).

·

Стандартизацию проводят органы стандартизации, наделенные законным правом руководить разработкой и утверждать нормативные документы и другие правила, придавая им статус стандартов.

В России компетентными органами в области стандартизации являются ГОССТАНДАРТ России и ГосСтрой.

Основополагающими документами в области стандартизации являются Закон «О стандартизации» и «Государственная система стандартизации» (ГСС).

Комплекс стандартов ГСС РФ представляют собой систему взаимоувязанных правил и положений, определяющих цели и задачи стандартизации, организацию и методику проведения работ по стандартизации во всех производственных отраслях России.

ГСС устанавливает порядок разработки, оформления, согласования, утверждения, издания, обращения стандартов разных уровней стандартизации и других нормативных документов, а также контроля над их внедрением и соблюдением.

Уровни стандартизации и Категории стандартов:

· Международная стандартизация. Органом по стандартизации является ИСО (ISO). Нормативным документом ИСО являются стандарты ИСО.

· Межрегиональная стандартизация. Охватывает ряд независимых государств (СНГ, ЕЭС и др.). Нормативным документом стран СНГ является межрегиональный стандарт.

· Национальная стандартизация. Это — стандартизация в пределах одного государства. Нормативным документом по национальной стандартизации в России установлен государственный стандарт России — ГОСТ Р, в ФРГ — DIN, в Великобритании — BS, и т. д.

· Правила, нормы и рекомендации в области стандартизации, общероссийские классификаторы технико-экономической и социальной информации.

· Стандарты организаций — отраслевые стандарты (ОСТ), стандарты предприятий (СТП), стандарты обществ и т. п. Это — низший уровень стандартизации.

ОСТы имеют применение в выпустивших их отраслях промышленности. Обычно в виде ОСТов оформляются типовые ситуации, которые после дальнейшей практической проверки и подтверждения своей важности служат основой для выпуска соответствующего ГОСТа.

СТП имеют применение только на выпустившем их предприятии. Часто оформляются в виде нормалей, которые устанавливают ограничения на применяемую номенклатуру (перечень) деталей, материалов, норм и т. п., что вызывается особенностями снабжения и производства. Требования стандартов предприятий могут быть обязательными и для других предприятий, если между ними существуют договорные отношения, в том числе устанавливающие обязательность исполнений определенного круга стандартов одного из предприятий.

Государства стремятся к согласованию национальных стандартов и выпуску международных стандартов (например, стандарт ИСО на допуски и посадки), что упрощает обслуживание и ремонт экспортной продукции, облегчает продвижение товара на внешние рынки.

Применение международных и национальных стандартов других стран на территории РФ возможно в трех случаях:

· принимается текст международного стандарта в качестве российского стандарта без каких-либо изменений текста. В этом случае стандарт обозначается так ГОСТ-Р ИСО 2001-96.

· принимается текст международного стандарта как основной, но вводятся изменения отражающие специфику российских требований. Обозначается ГОСТ-Р 50321-92 (ИСО 7173:1989).

· международный стандарт используется как источник информации. Из него заимствуют отдельные положения. В этом случае в обозначении стандарта международный стандарт не указывается, но упоминается в тексте стандарта как первоисточник.

Единые государственные системы стандартов

На основе комплексной стандартизации в РФ разработаны системы стандартов, каждая из которых охватывает определенную сферу деятельности, проводимой в общегосударственном масштабе или в определенных отраслях народного хозяйства.

К подобным системам относятся:

· Государственная система стандартизации (ГСС),

· Единая система конструкторской документации (ЕСКД),

· Единая система технологической подготовки производства (ЕСТПП),

· Единая система технологической документации (ЕСТД),

· Единая система классификации и кодирования технико-экономической информации,

· Государственная система обеспечения единства измерений (ГСИ),

· Государственная система стандартов безопасности труда (ГССБТ) и др.

Основы сертификации

Понятие сертификации. Цели сертификации


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: