Тройные интегралы

Пусть функция u=f (x, y, z) определена и непрерывна в ограниченной замкнутой области T пространства Oxyz. Разобьем область T произвольным образом на n областей V 1, V 2,…, Vn, которые назовем элементарными областями. В каждой из элементарных областей произвольным образом выберем по точке , которые назовем точками пунктуации. Обозначим через объем, а через диаметр i- ойэлементарной области (i= 1,…, n), . Составим выражение

, (7)

которое называется интегральной суммой Римана для функции u=f (x, y, z) по области T. Заметим, что выражение (7) зависит от способа разбиения области T на элементарные области и от способа выбора точек пунктуации.

Если существует предел выражения (7) при и если этот предел не зависит ни от способа разбиения области T на элементарные области, ни от способа выбора точек пунктуации, то он называется тройным интегралом от функции u=f (x, y, z) по области T и обозначается

Таким образом,

(8)

Свойства тройных интегралов аналогичны свойствам двойных интегралов.

Вычисление тройных интегралов сводится к вычислению повторных интегралов следующим образом. Пусть область T ограничена снизу поверхностью , сверху поверхностью и с боков прямой цилиндрической поверхностью; проекцией области T на плоскость Oxy является область D (рис. 6). Такую область назовем правильной в направлении оси Oz.

Рис. 6

Пусть функция u=f (x, y, z) определена и интегрируема в области T и для любых точек существует интеграл

.

Тогда существует интеграл

и справедлива формула

(9)

Аналогичные формулы справедливы и в случае, когда область T правильная в направлении оси Ox или оси Oy.

Теорема (о замене переменных в тройном интеграле). Пусть выполняются следующие условия:

1) функции x=x (u, v, w), y=y (u, v, w) и z=z (u, v, w) таковы, что каждой точке с координатами (x, y, z) из области T соответствует единственная точка с координатами (u, v, w) из области T 1 и наоборот;

2) функции x=x (u, v, w), y=y (u, v, w) и z=z (u, v, w) имеют непрерывные частные производные по переменным u, v и w;

3) функция u=f (x, y, z) определена и интегрируема в области T.

Тогда справедлива формула:

, (10)

где

- якобиан перехода от декартовых координат к криволинейным координатам.

Частным случаем криволинейных координат для тройного интеграла являются цилиндрические и сферические координаты.

1) В случае цилиндрических координат положение точки M в пространстве определяется тремя числами , где и - полярные координаты проекции точки M на координатную плоскость Oxy, z – аппликата точки M (рис.7).

Рис. 7

Имеют место формулы:

,

якобиан перехода от декартовых координат к цилиндрическим равен и формула (10) принимает вид:

(11)

2) В случае сферических координат положение точки M в пространстве определяется тремя числами , где - расстояние от начала координат до точки M, - угол между проекцией радиус-вектора точки M на плоскость Oxy и осью Ox, - угол между радиус-вектором точки M и осью Oz (рис.8).

Рис. 8

Имеют место формулы:

,

якобиан перехода от декартовых координат к сферическим равен и формула (10) принимает вид:

(12)

Задание 1. Вычислить интеграл:

,

где T - тетраэдр, ограниченный плоскостями: x+y+z =1, x= 0, y= 0, z= 0.

Решение. Изобразим область интегрирования (рис.9).

Область интегрирования ограничена снизу плоскостью z= 0, сверху плоскостью z= 1 -x-y, по бокам плоскостями x= 0 и y= 0. Проекцией области T на плоскость Oxy является область D - треугольник OAB. По формуле (9) имеем:

.

Рис. 9

Записывая двойной интеграл по области D через повторный интеграл, получим:

И, наконец, вычислим полученный повторный интеграл:

.

Задание 2. Перейдя к цилиндрическим координатам, вычислить интеграл:

.

Решение. Изобразим область интегрирования (рис.10).

Рис. 10

Положим

и применим формулу (11). Так как , то

Задание 3. Переходя к сферическим координатам, вычислить интеграл:

.

Решение. Область интегрирования T есть полушар (рис.11).

Рис. 11

Найдем пределы изменения сферических координат для области T 1:

Следовательно, по формуле (12) имеем:

.

Вычислив полученный тройной интеграл, получим:

.

Приложения кратных интегралов

1. Геометрические приложения двойных интегралов

Площадь S плоской области (фигуры) D выражается в зависимости от рассматриваемой системы координат, следующими интегралами:

(13)

- в декартовых координатах,

(14)

- в полярных координатах.

Пусть гладкая поверхность задана уравнением z=f (x, y). Тогда площадь части этой поверхности, проектирующейся в область D плоскости Oxy, равна:

(15)

Пусть область T ограничена снизу плоскостью z= 0, сверху – непрерывной поверхностью z=f (x, y) и с боков прямой цилиндрической поверхностью. Если проекцией области T на плоскость Oxy является область D, то объем V области T выражается интегралом

(16)

2. Механические приложения двойных интегралов.

Масса M пластинки, занимающей область D плоскости Oxy, имеющей плотность , равна:

. (17)

Статические моменты Mx и My этойпластинки относительно осей Ox и Oy

выражаются интегралами:

(18)

Координаты центра масс и пластинки определяются следующим образом:

. (19)

Моменты инерции пластинки относительно осей Ox и Oy соответственно равны:

(20)

а момент инерции пластинки относительно начала координат равен:

. (21)

Заметим, что если рассматриваемая пластина однородна, то в приведенных формулах следует положить .

3. Геометрические приложения тройного интеграла

Объем V пространственной области T равен:

(22)

4.Механические приложения тройных интегралов. Масса M тела с плотностью ,занимающего область T, равна

(23)

Статические моменты Mxy, Mxz, Myz тела относительно координатных плоскостей выражаются интегралами:

(24)

Координаты центра масс тела T определяются следующим образом:

. (25)

Моменты инерции тела относительно осей координат соответственно равны:

(26)

.

Заметим, что если рассматриваемое тело однородно, то в приведенных формулах следует положить .

Задание 1. Найти объем тела, ограниченного поверхностями:

.

Решение. Данное тело ограничено снизу плоскостью z= 0, сверху плоскостью y+z= 1 и с боков цилиндром (рис.12а).

Проекцией рассматриваемого тела является область D (рис. 12б).

Рис. 12а

Рис. 12б

Найдем объем нашего тела двумя способами:

1) с помощью двойного интеграла;

2) с помощью тройного интеграла.

В первом случае воспользуемся формулой (16). В нашем случае f (x, y)=1 -y.

Следовательно,

.

Вычисляем полученный повторный интеграл:

V= 8/15.

Теперь найдем значение объема данного тела с помощью тройного интеграла. Для этого воспользуемся формулой (22). Имеем:

.

Вычисляем полученный тройной интеграл:

V= 8/15.

Задание 2. Найти координаты центра масс однородного тела, ограниченного поверхностями .

Решение. Данное тело изображено на рис.12а. Чтобы найти координаты центра масс рассматриваемого тела, воспользуемся формулами (25).

Найдем сначала массу тела. Для этого применим формулу (23) при , так как наше тело однородное. Имеем:

(это интеграл мы вычисляли в предыдущем примере).

Вычислим теперь статические моменты Mxy, Mxz, Myz рассматриваемого тела относительно координатных плоскостей. Для этого воспользуемся формулами (24) при . Имеем:

,

,

Вычислив полученные тройные интегралы, имеем:

Mxy= 16/105,

Mxz= 24/105,

Myz= 0.

Следовательно, координаты центра масс данного тела равны:

.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: