Представление вещественных чисел в памяти компьютера

Рассматриваемая тема не обязательно связана с объединением, она представляет также самостоятельный интерес. Здесь этот материал нужен для понимания некоторых примеров этого и последующих параграфов.

Вещественное число (число с плавающей запятой) состоит из двух частей: мантиссы и порядка. Например, число в десятичной системе счисления 0,000123 можно записать одним из следующих способов: 0.0000123*10; 0,123*10-3; 1,23*10-4 и т.д. Аналогично 78900=0,789*105=78,9*103 и т.д. Термин “число с плавающей запятой” и связан с тем, что десятичная запятая перемещается (плывёт) по числу. Из такого рода различных записей в десятичной системе счисления нас будет интересовать нормализованное число, соответственно 0,123*10-3 и 0,789*105. Первая его часть называется мантиссой (0,123 и 0,789), а числа -3 и 5 – порядком.

Аналогично различные варианты записи (на бумаге, а не в памяти компьютера) вещественного числа имеют место и в двоичной системе счисления. Например, рассмотрим десятичное число 12,375. Для его перевода в двоичную систему счисления отдельно переводим целую часть (см. гл. 4 файла Lections1Semestr) и отдельно дробную часть. В качестве вспомогательной системы счисления можно использовать шестнадцатеричную. Для перевода дробной части из 10 с.с в 16 с.с выполняем следующее:

дробную часть числа умножаем на 16;

полученную целую часть результата (число от 0 до 15) переводим в 16-ю с.с и берём в качестве первой после запятой 16-й цифры результата;

дробную часть результата, если она не равна нулю, повторно умножаем на 16;

полученную целую часть переводим в 16-ю с.с и берём в качестве следующей 16-й цифры;

дробную часть результата снова умножаем на 16;

это продолжаем, пока не наступит одна из следующих ситуаций:

a) на некотором шаге, не обязательно в самом начале, получим в дробной части нуль. В этом случае перевод выполнили точно. Это имеет место в нашем примере: 0,375*16=6.0;

b) получим в дробной части число, которое было раньше. Например, 0,15*16=2,4; 0,4*16=6,4. Если продолжать умножение 0,4*16, будем получать одно и то же, т. е 6,4. В таком случае получаем следующий результат: 0,1510= 0,2666…16=0,2(6)16. Круглые скобки означают, что записанное в них одно или несколько разных чисел будут повторяться бесконечное число раз. Говорят, что это число в периоде, т.е. 6 в периоде;

c) если не получаем ни нуль, ни повторяющиеся числа, то ограничиваемся заданным предварительно количеством двоичных или шестнадцатеричных цифр. Для числа типа float необходимо получить 24 двоичные цифры, считая от первой значащей, или не менее 7 шестнадцатеричных цифр, не считая первые 16-е нули.

Для перевода дробной части из 16-й в 2-ю с.с. записываем каждую 16-ю (но не 10-ю!) цифру в виде тетрады, т.е. четырёх двоичных цифр. Получим 12.37510=С.616=1100,0110. При этом последнюю цифру ‘0’ можем не писать. Как и в 10-й с.с., этот нуль незначащий. Остальные нули рядом с десятичной запятой обязательны!

Это двоичное число, как и в 10-й с.с., записать можно по-разному: 11,00011*22; 1100011*2-3; 1.100011*23. Из приведенных вариантов нас будет интересовать последняя нормализованная запись, в которой в целой части записана одна первая значащая единица. Получим: m= памяти не хранится, но 1.100011; p=310=112, где m — нормализованная мантисса, p — порядок в 2 с.с.

Пусть число объявлено как float. Тогда 4 байта (32 бита) распределяются следующим образом:

один самый “левый” бит отводится под знак мантиссы, или, что то же самое, под знак всего числа. Записывается 0, если мантисса, а, значит и само вещественное число, положительное, и 1 в противном случае. Никакого дополнительного кода для отрицательного вещественного числа, как это было для целых чисел, получать не надо;

следующие 8 разрядов (бит) занимает изменённый порядок записи числа в 2-й с.с., который называется характеристикой числа. Обозначим её x. Знак порядка нигде не хранится. Чтобы он всегда был неотрицательным, порядок увеличивается на 12710, т. е. x=p+12710=p+7F16. (1)

Для нашего примера здесь будет храниться число x=310+12710= 13010=8216=100000102. Это же можно вычислить и так: x=316+7F16=8216 =100000102;

последние 23 (32-1-8) разряда занимает мантисса. При этом целая её часть, равная 1, в памяти не хранится, но учитывается при вычислениях. Если дробная часть числа переведена в 16-ю, а, значит и в двоичную с.с не точно, т. е. имели место варианты b) и c) (см. выше перевод), последняя 2-я цифра округляется по обычным правилам. Если первая отбрасываемая 2-я цифра равна 1, то прибавляем двоичную единицу, в противном случае оставляем без изменения.

Таким образом, число 12,375 в формате float будет представлено следующим образом: 01000001010001100000000000000000. Иногда в литературе можно встретить шестнадцатеричную запись этого результата: 4146000016.

Упражнение. Представить число -0.01 как число с плавающей точкой в формате float.

Переводим модуль числа в шестнадцатеричную, а затем в двоичную системы счисления описанным выше способом:

0.01= 0.028F5С28F5C…16=0.0(28F5С)16=0.0000001010001111010111000010100…2.

Так как под мантиссу отводится 23 разряда, то должны получить 25 двоичных цифр, не считая первых после десятичной точки подряд идущих нулей. Почему? По правилу нормализации самая первая значащая единица (в примере в десятичной цифре 2) в память не записывается, а ещё одна дополнительная двоичная цифра нужна для того, чтобы определить, как округлять число. Так как первая отбрасываемая двоичная цифра =0, то получаем

m=0.010001111010111000010102.

Если число “маленькое”, т.е. целая часть =0, а в дробной части после запятой несколько подряд идущих нулей, то получим отрицательный порядок. Так как 0.0000001010001111010111000010102 = 1.01000111101011100001010*2-7,

то p=-710=-716, x= p+7F16=7F16-716=7816=011110002.

В результате получим ответ: 10111100001000111101011100001010.

Рассмотрим обратную задачу. Пусть в ячейке размером 4 байта хранится следующая последовательность нулей и единиц, шестнадцатеричное представление которой такое: С215999A16. Известно, что здесь хранится вещественное число, т.е. в программе записано, например, объявление: float a. Что это за число в 10-й системе счисления?

Для ответа на этот вопрос в обратном порядке выполняем действия, описанные выше.

1) Запишем двоичное представление числа: 11000010000101011001100110011010.

2) Единица в старшем бите (самая “левая”) означает, что всё вещественное число отрицательное.

3) В следующих 8 битах находится характеристика числа, т.е. x=100001002=8416. Из формулы (1) получаем двоичный порядок числа: p=x-7F16=8416-7F16 =516=510.

4) Из последних 23 разрядов получаем m=0.001010110011001100110102.

5) Поэтому искомое число

a=1.00101011001100110011010*25=100101.0110011001100110102@25.(6) 16@37.410.

Перевод дробной части выполняли следующим образом:

0.(6) 16 = 0.6666616 = 6*16-1+6*16-2+6*16-3+6*16-4+6*16-5@0.410.

Т.к. это отрицательное число, то получаем ответ: - 37.410

5.2. Объявление объединения. (+)

Объявление типа объединения, которые ещё называют смеси, похоже на объявление структурного типа. Только вместо ключевого слова struct используется union. Как и для структурной переменной, возможны три способа объявления переменной типа объединения: раздельное, совместное и анонимное (см. 1.1).

Для изучения объединения сначала рассмотрим следующий код для работы со структурой.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: