Электромагнитные реле тока и напряжения

«Воспринимающим элементом» электромагнитного реле служит электромагнитный механизм (ЭММ), преобразующий входной электрический сигнал в перемещение якоря (см. [1] п.4). «Исполнительный элемент» - коммутирующий контакт (см. [1] п.2), на который воздействует якорь ЭММ с помощью механической передачи (см. [1] п.3), замыкая или размыкая контакт.

Электромагнитное реле (РЭМ) является элементом канала связи электрических цепей. Оно может быть представлено структурной схемой, как показано на рис. 4.1.

 
 


Действие составных частей и в целом нейтрального реле аналогично действию магнитного контактора с самовозвратом (см. п. 2.1). Работа нейтрального реле не зависит от направления тока в обмотке катушки электромагнитного механизма (ЭММ). Контактная система может содержать от одного до 12 коммутирующих контактов (КК), рассчитанных на длительные постоянные или переменные токи до 16 А.. В механической передаче (МП) предусматривается возвратная пружина. Поэтому нейтральное реле – аппарат с самовозвратом. Характеристика управления может быть представлена по табл. 4.1 нелинейностью 2 (при kB =1) или нелинейностью 3.

Особенности магнитопроводов ЭММ нейтральных реле постоянного тока и реле переменного тока такие же, как у контакторов постоянного тока и контакторов переменного тока соответственно (см. п. 2.3).

Реле тока применяют для контроля силы тока в электрической цепи (ЭЦ1) и передачи информации о контролируемой величине типа «больше» или «меньше» в другую цепь (ЭЦ2). Входной переменной х (t)= i (t) реле тока РТ является ток i, протекающий по контролируемой электрической цепи ЭЦ1. Выходная переменная d (t)= RК (t) – сопротивление RК, вносимое реле в электрическую цепь ЭЦ2 своим коммутирующим контактом.

Реле напряжения применяют для контроля уровня напряжения (х (t)= U (t)) в электрической цепи и передачи информации о контролируемой величине в другую цепь с помощью коммутирующего контакта.

Реле тока и реле напряжения имеют одинаковую структуру (рис. 4.1), но функциональные части реле имеют конструктивные отличия. Существенно отличие в исполнении электромагнитной (втягивающей) катушки электромагнитного механизма реле. У реле тока обмотка катушки выполнена толстым проводом и имеет небольшое количество витков, что обеспечивает малое сопротивление протекающему по ней току. Сопротивление обмотка катушки реле напряжения большое. Оно создается большим количеством витков тонкого провода. Обмотку обычно включают на полное напряжение сети.

В поляризованном реле (это реле постоянного тока) установлен поляризованный электромагнитный механизм (см. [1] п.4.9). При одном направлении тока в катушке якорь притягивается к соответствующему полюсу сердечника ЭММ и при этом срабатывают контакты одной группы, при другом направлении тока якорь перемещается к другому полюсу и срабатывают контакты другой группы. Характеристика управления поляризованного реле без самовозврата может быть представлена нелинейностью 5 по табл. 4.1.

Электромагнитные реле характеризуются следующими основными параметрами.

Напряжение (ток) срабатывания реле (хср) – наименьшее значение напряжения на клеммах катушки ЭММ или наименьшее значение тока в ней, при которых якорь надежно притягивается к сердечнику, а замыкающие контакты переходят из разомкнутого состояния в замкнутое. В паспорте реле указано номинальное напряжение, на которое рассчитано включение ЭММ, несколько превышающее напряжение срабатывания. Этим обеспечивается надежность срабатывания реле.

Напряжение (ток) отпускания реле (хот) – наибольшее напряжение на клеммах катушки ЭММ или наибольший ток в ней, при которых тяговое усилие, действующее на якорь ЭММ, уменьшается до значения, необходимого для надежного отпадания якоря от сердечника, а замыкающие контакты переходят из замкнутого состояния в разомкнутое состояние.

Коэффициент возврата реле – отношение напряжения (тока) отпускания к напряжению (току) срабатывания.

Время срабатывания реле (τср)– промежуток времени с момента подачи напряжения срабатывания на катушку реле до момента переключения его контактов.

Время отпускания реле (τот) – промежуток времени с момента снятия напряжения с катушки до момента возвращения контактов в исходное положение.

Уставка реле – величина напряжения или тока, на которую настроено реле и при которой оно срабатывает или отпускает.

Реле максимального тока настраивают по току срабатывания (хср = Iср). Например, катушки реле максимального тока серии РЭВ выполняют на номинальные токи от 2,5 до 600 А. Уставка по току срабатывания ограничивается пределами Iср =(1,1…7) Iном.р относительно номинального тока катушки реле Iном.р. Коэффициент возврата kB =0,2…0,4. Реле выполняются с самовозвратом и с ручным возвратом. В последнем случае используют механическую передачу с защелкой (см. [1] п. 4.2).

Реле минимального напряжения настраивают на напряжение отпускания (хот = Uот). Например, реле минимального напряжения серии РЭМ в зависимости от исполнения рассчитаны на напряжения втягивающей катушки 24, 55, 110, 220 В постоянного тока. Напряжение отпускания у реле напряжения составляет 15…45% от номинального значения напряжения катушки. Коэффициент возврата от 0,3 до 0,8.

Реле минимального напряжения остается включенным, пока контролируемое им напряжение не окажется ниже минимального допустимого значения. Поэтому уставка реле минимального напряжения несколько ниже этого значения. Когда напряжение упадет до значения уставки реле на отпускание, оно отключится и тем самым вызовет отключение нагрузки (например, электродвигателя).

Реле максимального напряжения срабатывает и отключает контролируемое устройство, если напряжение в цепи превысит допустимое значение. Уставка на срабатывание (включение) реле несколько выше предельно допустимого значения напряжения, и пока напряжение в цепи не превысит это значение, реле остается в отключенном состоянии. Если же напряжение в цепи достигнет значения уставки реле на срабатывание, то реле максимального напряжения включится и вызовет этим отключение нагрузки (двигателя в электроприводе).

Коммутирующие контакты максимальных и минимальных реле в электроприводе обычно включают в цепи катушек контакторов, с помощью которых отключают электродвигатели от питания.

Промежуточные реле, например типов РП-41, РП-42, ЭП-41, применяют для размножения сигналов управления, то есть для увеличения числа коммутирующих контактов, если количество контактов какого-либо реле или вспомогательных контактов контактора в схеме управления недостаточно или допустимый ток на контактах слишком мал.

Герконовые реле в своей конструкции совмещают магнитопровод ЭММ, механическую передачу (МП) и коммутирующий контакт (КК), выполненный в виде плоских пружинящих пластин из сплава пермаллой с высокой магнитной проницаемостью. Пластины помещают в стеклянный баллон, заполняют его инертным газом и герметизируют. Если такой герметизированный контакт (геркон) поместить внутрь катушки (рис. 4.2а) и по обмотке w катушки пропустить ток Iу, то возникший магнитный поток, проходя по пластинам контакта, вызовет появление электромагнитной силы и смыкание контактных пластин. После того, как обмотка будет обесточена (Iу =0), контакт разомкнется, благодаря упругости контактных пластин.

 
 


Аналогичным образом реагирует геркон на магнитное поле, созданное постоянным магнитом N-S (рис. 4.2б). Приближение (х у) магнита к геркону приводит к замыканию контакта, удаление – к размыканию. Такой способ управления герконом используется в слаботочных аппаратах управления (тумблеры, переключатели, кнопки и др. командоаппараты) и контрольно-измерительной аппаратуре (сигнализаторы положения, конечные выключатели, датчики).

Пример герконового реле с тремя коммутирующими контактами приведен на рис. 4.2в. Герконы охвачены общей для них включающей катушкой. Количество герконов в одном реле может достигать 12 и более.

Конструкция герконового реле, показанная на рис. 4.2, имеет разомкнутую магнитную цепь. По этой причине большая доля магнитодвижущей силы I у w (МДС) катушки расходуется на проведение магнитного потока по воздуху. Кроме того, такая конструкция подвержена воздействию внешних магнитных полей. Для устранения этого недостатка магнитная система герконового реле (рис. 4.2а и рис. 4.2б) заключается в кожух (экран) из магнитомягкого материала. При этом увеличивается магнитная проводимость и уменьшается МДС срабатывания.

Разработаны конструкции герконовых реле с памятью.

Помимо герконовых реле с замыкающими контактами существуют герконовые реле с размыкающими контактами (в конструкцию добавлен постоянный магнит). Существуют также поляризованные герконовые реле.

По сравнению с обычными электромагнитными реле герконовые реле имеют высокое быстродействие (время срабатывания и отпускания до 3 мс), что позволяет использовать герконы при частоте коммутаций до 1000 в секунду. Герконы выдерживают до 108 и более циклов коммутаций. Возможность работы от кратковременных импульсов I у (десятки микросекунд) и малая энергия, потребляемая при таком управлении, позволяют широко использовать герконы как выходные (усилительные) элементы в серии полупроводниковых элементов «Логика И».

Основной недостаток герконовых реле – малая допустимая токовая нагрузка (I) на контакты (максимальная нагрузка у герсиконов, например, I ном=6,3 А у герсикона типа КМГ-12). Другой существенный недостаток – «дребезг» контактов при срабатывании реле, т.е. вибрация контактных пластин, вызванная их упругостью (продолжительность вибрации может достигать половины времени срабатывания).

Обычные герконы типа КЭМ, МК, МУК и др., применяемые в реле, изготовляют на ток до 3 А напряжением до 300 В. Время срабатывания от 3 до 10 мс. Ресурс коммутационных циклов составляет 107…109.

Герконы применяют в реле напряжения, например, РЭС42, РЭС43, РЭС44, в реле тока и др. Реле промежуточные герконовые серии РПГ применяются в схемах автоматики и управления с источниками питания (в зависимости от марки реле) на напряжения 12, 15, 24, 48, 60, 110 и 220 В постоянного тока или выпрямленного трехфазного тока. Реле пригодны для работы в системах управления на базе микропроцессорной техники.

По времени срабатывания τср или времени отпускания τот все реле тока и напряжения подразделяют на быстродействующие (τср <50 мс) и нормальные (τср =50…250 мс). Для получения времени срабатывания или отпускания больше 250 мс применяют специальные реле, называемые реле времени.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: