Канальное кодирование

Помехоустойчивое кодирование осуществляется за счет введения в состав передаваемого сигнала довольно большого объема избыточной (контрольной) информации. В английской терминологии такое кодирование носит наименование Forward Error Correcting coding (FEC coding), т.е. кодирование с упреждающей коррекцией ошибок, или кодирование с коррекцией ошибок на проходе. В сотовой связи помехоустойчивое кодирование реализуется в виде трех процедур - блочного кодирования, сверточного кодирования и перемежения. Кроме того, кодер канала выполняет еще ряд функций: добавляет управляющую информацию, которая, в свою очередь, также подвергается помехоустойчивому кодированию; упаковывает подготовленную к передаче информацию и сжимает ее во времени; осуществляет шифрование передаваемой информации, если таковое предусмотрено режимом работы аппаратуры. Последовательность выполнения этих задач показана на блок-схеме рис. 10.

При блочном кодировании входная информация разделяется на блоки, содержащие по k символов каждый, которые по определенному закону преобразуются кодером в n-символьные блоки, причем n > k (рис. 10). Отношение R = k/n носит наименование скорости кодирования и является мерой избыточности, вносимой кодером. При рационально построенном кодере меньшая скорость кодирования, т.е. большая избыточность, соответствует более высокой помехоустойчивости.

Повышению помехоустойчивости способствует также увеличение длины блока. Блочный кодер с параметрами n, k обозначается (n, k). Если символы входной и выходной последовательностей являются двоичными, т.е. состоят из одного бита каждый, то кодер называется двоичным; именно двоичные кодеры используются в сотовой связи. Схема, представленная на рис. 11, соответствует двоичному блочному кодеру (5, 4).

Рисунок 10 - Канальное кодирование

Рисунок 11 - Блочное кодирование

Каждый бит блока выходной информации является суммой по модулю 2 нескольких бит (от одного до k) входного блока, для чего используется n сумматоров по модулю 2. Один из сумматоров на схеме рис. 11 (второй справа) является вырожденным - на его вход поступает лишь одно слагаемое.

При сверточном кодировании (рис. 12) К последовательных символов входной информационной последовательности, по k бит в каждом символе, участвуют в образовании n-битовых символов выходной последовательности, n > k, причем на каждый символ входной последовательности приходится по одному символу выходной.

а) б)

Рисунок 12 - Схема сверточного кодирования (4, 2, 5) (n = 4, k = 2; R = k/n = 1/2). а) - побайтовый контроль четности позволяет обнаружить одиночные ошибки в байтах; б) - добавление еще 8-го бита контроля позволяет исправить одиночную ошибку в восьми байтах

Каждый бит выходной последовательности получается как результат суммирования по модулю 2 нескольких бит (от двух до Kk бит) К входных символов, для чего используются п сумматоров по модулю 2. Сверточный кодер с параметрами n, k, К обозначается (n, k, K). Отношение R = k/n, как и в блочном кодере, называется скоростью кодирования.

Параметр К называется длиной ограничения (constraint length); он определяет длину сдвигового регистра (в символах), содержимое которого участвует в формировании одного выходного символа. После того, как очередной выходной символ сформирован, входная последовательность сдвигается на один символ вправо (рис. 11). В результате символ 1 выходит за пределы регистра, символы 2…5 перемещаются вправо, каждый на место соседнего, а на освободившееся место записывается очередной символ входной последовательности, и по новому содержимому регистра формируется следующий выходной символ. Название сверточного кода обязано тому, что он может рассматриваться как свертка импульсной характеристики кодера и входной информационной последовательности. Если k = 1, т.е. символы входной последовательности однобитовые, сверточный кодер называется двоичным. Сверточный кодер, схема которого приведена на рис. 11, не является двоичным, поскольку для него k = 2.

Перемежение представляет собой такое изменение порядка следования символов информационной последовательности, т.е. такую перестановку, символов, при которой стоявшие рядом символы оказываются разделенными несколькими другими символами. Такая процедура предпринимается с целью преобразования групповых ошибок (пакетов ошибок) в одиночные ошибки, с которыми легче бороться с помощью блочного и сверточного кодирования. Использование перемежения - одна из характерных особенностей сотовой связи, что это является следствием неизбежных глубоких замираний сигнала в условиях многолучевого распространения, которое практически всегда имеет место, особенно в условиях плотной городской застройки. При этом группа следующих один за другим символов, попадающих на интервал замирания (провала) сигнала, с большой вероятностью оказывается ошибочной. Если же перед выдачей информационной последовательности в радиоканал она подвергается процедуре перемежения, а на приемном конце восстанавливается прежний порядок следования символов, то пакеты ошибок с большой вероятностью рассыпаются на одиночные ошибки, вероятность исправления которых значительно выше.

Известно несколько различных схем перемежения и их модификаций - диагональная, блочная, свёрточная и другие.

В канальном кодирование так же осуществляется и скремблирование. Скремблирование - разновидность кодирования информации для передачи по каналам связи, улучшающая спектральные и статистические характеристики сигнала. Скремблирование есть приведение информации к виду, по различным характеристикам похожему на случайные данные. Скремблирование выравнивает спектр сигнала, частоты появления различных символов и их цепочек.

В стандарте GSM повышение эффективности канального кодирования и перемежения при малой скорости перемещения подвижных станций достигается медленным переключением рабочих частот сеанса связи (со скоростью 217 скачков в секунду). Главное назначение медленных скачков – обеспечение частотного разнесения в радиоканалах, функционирующих в условиях многолучевого распространения радиоволн. Принцип формирования медленных скачков по частоте состоит в том, что сообщение в каждом последующем кадре передается (принимается) на новой фиксированной частоте. Параметры последовательности переключений частот (частотно-временная матрица и начальная частота) назначаются для каждой подвижной станции в процессе установления канала связи. Этот метод несколько модифицированный используется и в широкополосных системах связи.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: