Различные виды диаграмм применяются для сравнения одноименных статистических данных, характеризующих разные территории или объекты. Наиболее распространённым видом таких диаграмм являются столбиковые диаграммы. Они представляют собой график, в котором различные величины представлены расположенными в высоту прямоугольниками («столбиками») одинаковой или разной высоты. Столбиковые диаграммы применяются для сравнения некоторых объектов во времени.
Построение такого рода диаграмм требует только одной вертикальной масштаб-вой шкалы, которая определяет высоту каждого столбика.
Масштабная шкала должна начинаться с нуля, быть непрерывной и на ней записываются лишь круглые или округленные значения.
Столбики должны быть даны на некотором, одинаковом для всех расстоянии или вплотную друг к другу. Ширина столбиков берется произвольной. На шкале должна быть указана единица измерения. При выборе масштаба надо рассчитать так, чтобы максимальное число было представлено на графике.
Пример. Требуется изобразить с помощью столбиковой диаграммы данные о трудоустройстве граждан органами государственной службы занятости региона (цифры условные): в 2004 г. трудоустроено 2822 чел,; в 2003 г. - 2398 чел.; в 2002 г. - 2406 чел.; в
2001 г. - 2218 чел. Примем масштаб: 500 чел. соответствует 1 см. Тогда высота первого столбика (трудоустройство в 2001 г.) будет равна 4,4 см (1 см*2218/500), высота второго ' (в 2002 г.)-4,8 см; высота третьего (в 2003 г.)-4,79 см; высота четвертого (в 2004 г.)-5,6 см.
Наглядность данной диаграммы достигается сравнением высоты столбиков (рис. 4.4).
На рис. 4.5 с помощью столбиковой диаграммы показана структура посевных площадей сельхозпредприятий N-ой области РФ за 2004 г. (цифры условные). На этой диаграмме столбики располагаются вплотную по группам объектов в пространстве/
Масштаб принят такой, что каждым 5000 тыс. га соответствует отрезок в 1 см.
Если прямоугольники, изображающие показатели, расположить не по вертикали, а
по горизонтали, то диаграмма получит название ленточной. В качестве примера приведем полосовую диаграмму сравнения, характеризующую данные о реализации минеральных удобрений сельхозпредприятиями в N-ом регионе за 2001-2004 гг. (рис. 4.6).
Рис. 4.4. Динамика трудоустройства граждан органами государственной службы занятости в регионе за 2001-2004 гг.
Рис. 4.5. Структура посевных площадей сельхозпредприятий N-ой области РФ в 2004г.
0 2000 4000 6000 8000 10000 12000
Тыс.т
Рис. 4.6. Динамика реализации минеральных удобрений сельскохозяйственными предприятиями в N-ом регионе за 2001-2004 гг.
Иногда разница между наименьшими и наибольшими значениями сравниваемых данных настолько велика, что установление подходящего масштаба для столбиков или полос оказывается затруднительным. В этих случаях вместо столбиковой (полосовой) диаграммы целесообразно применить плоскостную (двухмерную) диаграмму - квадратную или круговую. Принцип построения этих диаграмм заключается в том, что величины сравниваемых данных изображаются площадями квадратов или кругов. Иными словами, площади квадратов (кругов) должны быть пропорциональны величинам изображаемых явлений, но сами площади квадратов (кругов) пропорциональны квадратам их сторон (радиусов). Следовательно, стороны квадратов или радиусов кругов должны быть пропорциональны корням квадратным из величин изображаемых статистических данных.
Пример. Необходимо с помощью квадратной диаграммы изобразить реализацию
молочных продуктов предприятиями розничной торговли в одном из регионов за 2004 г.
по следующим данным:
Товар | Товарооборот, млн. руб. |
творог | |
сметана | |
молоко |
Для построения квадратной диаграммы сначала извлечем квадратные корни из чисел: √11=3,32; √16=4; √19=4,36. Затем установим масштаб, например, примем 1см-1,5 млн. руб. Тогда сторона 1-го квадрата составит 2,2см (3,32:1,5); 2-го - 2,7см; 3-го - 2,9см (4,36:1,5). Далее строим квадраты.
Для правильного построения диаграммы квадраты необходимо расположить на одинаковом расстоянии друг от друга, а в каждой фигурке указать числовое значение, которое она изображает, не приводя масштаба измерения (рис. 4.7).
16
11