Матричные материалы

Помимо обеспечения прочности и монолитности конструкции матрица должна иметь необходимую пластичность и быть работо­способной в той температурной области, для которой предназна­чен КМ. Для изготовления КМ, применяемых при температурах ниже 200 °С, используют композиции с полимерной матрицей

Композиты с полимерной матрицей. Наибольшее распространение получили композиты с фенолоформальдегидной и полиамидной матрицей. В качестве матриц также используют термореактивные полимеры, в которых поперечные связи между основными цепями формируют жесткую структуру с трехмерной сеткой. Такими полимерами являются эпоксидные смолы, кото­рые благодаря поперечным связям имеют более высокую термо­стойкость. По сравнению с другими полимера­ми, применяемыми в качестве матриц композиционных материалов, эпок­сидные обладают более высокими меха­ническими свойствами в интервале тем­ператур от -60 до 180 °С, что обеспечивает композитным материалам более высокие прочностные характеристики при сжатии и сдвиге. Они отверждаются при сравнительно невысоких температурах с небольшой усадкой, позволяющей изготовлять из композитных материалов на их основе крупногабаритные детали. При изготовлении деталей из композитных материалов на основе эпоксидных матриц не требуется больших давлений, что особенно важно при использовании для армирования высокопрочных хрупких волокон, так как уменьшается вероятность их повреждения. Эпоксидные свя­зующие имеют плотность 1230— 1300 кг / м-3, модуль упругости при растяжении 2000—4000 МПа.

Полимерная матрица образуется после отверждения (полимеризации) связующего. К связующим и матрицам предъявляется весьма широкий комплекс требований как в процессе изготовления материала, так и при эксплуатации изделия из композита. Комплекс тре­бований на этапе изготовления следу­ющий: хорошая смачивающая спосо­бность и адгезия к армирующему мате­риалу; низкая усадка при отверж­дении; низкая вязкость связующего при большой жизнеспособности; высо­кая скорость отверждения.

Комплекс требований, которые предъявляются к матрице на этапе эксплуатации, следующий: высокие фи­зико-механические характеристики ма­трицы, во многом определяющие свой­ства композита; высокая термостой­кость матрицы; стойкость к климати­ческим и биологическим факторам и т. д.

В качестве упрочнителей исполь­зуют высокопрочные и высокомодуль­ные углеродные и борные, стеклян­ные и органические волокна в виде нитей, жгутов, лент, нетканых материа­лов.

Группы композиционных материалов, армированные однотипными волокна­ми, имеют специальные названия, данные им по названию волокна. Ком­позиции с углеродными волокнами на­зываются углеволокнитами, с борны­ми — бороволокнитами, стеклянными — стекловолокнитами, органическими — органоволокнитами. Для органоволокнитов используют эластичные (лавсан, капрон, нитрон) и жесткие (аромати­ческий полиамид, винол) синтетические волокна.

Из-за быстрого отверждения и низко­го коэффициента диффузии в неметал­лической матрице (исключение составляют органоволокниты) в компози­ционных материалах нет переходного слоя между компонентами. Связь между волокнами и матрицей носит адге­зионный характер, т. е. осуществляется путем молекулярного взаимодействия. Для обеспечения высокой проч­ности связи между компонентами необ­ходимо полное смачивание волокон (ко­торое достигается, например, растекани­ем жидкого связующего по поверхности волокон); при этом энергия поверхности волокон должна быть больше поверх­ностного натяжения жидкой матрицы. Энергию поверх­ности волокон повышают различными методами обработки их поверхности: травлением, окислением, вискеризацией. Жидкие эпоксидные смолы обладают лучшей адгезией к напол­нителям среди других полимеров.

На рис. 1.4 схематически показан способ изготовле­ния волокнистых композитов с полимерной матрицей.

бумага

Рис. 1.4. Схема изготовления композиционного материала

Волокна сматывают с бобин, подвергают поверхностной обработке, улучшающей адгезию, протягивают в ванну, где их покрывают полимерной смолой. Смола скрепляет волокна в плоский жгут — ленту. Готовые ленты собирают в слои­стый листовой материал (аналог фанеры) или же наматывают в более сложные формы. Собранный в листы или намотанный мате­риал отверждают термообработкой. Слои можно накладывать по­очередно с разным направлением волокон и формировать в компо­зите клетчатую структуру арматуры. Это придает материалу же­сткость. Недостатком такого композита является отсутствие попереч­ного армирования в каждом отдельном слое и между слоями. По­этому материал может расслаиваться. К тому же появившаяся трещина в объемном образце из такого КМ легко находит путь распространения между слоями. Для устранения этих недостат­ков изготавливают тканые КМ.

Стекловолокниты. Самую высокую прочность и удельную прочность имеют стекловолокниты. Временное сопротивление стекловолокнитов повышается приблизительно в три раза по мере увеличения объемного содержания наполнителя до 80% и достигает 700 МПа и армировании непрерывными нитями. Дискретные волокна упрочняют менее эффективно. Уменьшение диаметра волокон, нанесение на них специальных покрытий, дополнительное введение в матрицу монокристаллов оксида алюминия способствуют повышению временного сопротивления стекловолокнитов до 2000-2400 МПа. Они обладают хладостойкостью (до -196 °С) хорошей теплостойкостью. Их используют для длительной работы в диапазоне температур 200-400 °С. Кроме того, благодаря демпфирующей способ­ности они используются в условиях ви­брационных нагрузок.

Достоинствами стекловолокнитов являются недефицитность и низкая стоимость упрочнителя, недостатком - сравнительно низкий модуль упругости. Однако по удельной жесткости они пре­восходят легированные стали и сплавы алюминия, магния и титана (2500-2800 км).

Стекловолокниты с непрерывными волокнами, расположенными в одном направлении, используются для изготовления труб и различных профилей. Стекловолокниты, содержащие хаотично расположенные в плоскости короткие волокна, применяют в производстве корпусов лодок, автомобилей, при облицовке бытовых железобетонных конструкций, силовых деталей электрооборудования. Стекловолокниты с перекрестным армированием используют для изготовления плит, труб, сосудов высокого давления, топливных баков, пресс-форм, изоляторов для электродвигателей и трансформаторов и других изделий.

Углеволокниты (углепластики) по удельной прочности и жесткости превосходят стекловолокниты, сталь, алюминиевые и титановые сплавы, имеют низкий стабильный коэффициент трения, высокую износостойкость. Высокая электропроводность углепластиков используется при изготовлении электрообогревающих изделий.

Частичная замена сте­клянных волокон на углеродные и уве­личение доли последних вплоть до пол­ной замены при общем постоянном со­держании наполнителя вызывают повы­шение жесткости композиции. При полной замене модуль упру­гости увеличивается приблизительно в 3 раза. Однако временное сопроти­вление при лю­бом соотношении волокон не дости­гают уровня стеклопластиков.

Карбоволокниты. Карбоволокниты обладают низкими теплопроводностью и электрической проводимостью, но их теплопро­водность в 1,5-2 раза выше, чем у сте­клопластиков. Они имеют малый и стабильный коэффициент трения и обла­дают хорошей износостойкостью, поэтому применяются в качестве подшипников скольжения. Тем­пературный коэффициент линейного расширения карбоволокнитов в интер­вале 20-120 °С близок к нулю.

К недостаткам карбоволокнитов от­носят низкую прочность при сжатии и межслойном сдвиге. Специальная обработка поверхности волокон (окис­ление, травление, вискеризация) повы­шает эти характеристики.

Бороволокниты. Бороволокниты характеризуются вы­сокими пределами прочности при растя­жении, сжатии, сдвиге, твердостью и модулем упругости.

Зависимость механических свойств бороволокнитов от объемного содержа­ния волокон представлена на рис. 13.33.Однако свойства бороволокнитов зависят не только от свойств волокон объемного содержания, но и в большей степени от их геометрии и диаметра. Так, ячеистая структура волокна обеспечивает высокую прочность при сдвиге и срезе. Большой диаметр волокон и высокий модуль упругости придают устойчивость боропластику и способствуют повышению прочности при сжатии. Вместе с тем большой диаметр волокон вызывает необходимость увеличения эффективной длины волокон, повышает чувствительность к разрушению отдельных волокон, уменьшает временное сопротивление по сравнению с тонковолокнистым материалом.

Органоволокниты. Органоволокниты обладают высокой удельной прочностью в сочетании с хорошими пластичностью и ударной вязкостью. Характерной особенностью органоволокнитов является единая полимерная природа матриц и армирующих волокон. Матрица и наполнители имеют близкие значения температурных коэффициентов линейного расширения, им свойственны химическое взаимодействие и прочная связь. Органоволокниты имеют бездефектную и практически беспористую структуру (пористость 1-3%), хорошую стабильность механических свойств. Слабым местом при нагружении материала является не столько граница раздела между волокном и матрицей, сколько межмолекулярные связи в самом волокне.

Структура волокна неоднородна состоит из ориентированных макромолекул и их совокупности – фибрилл. Большая степень их ориентации в направлении оси волокон обеспечивает волокнам высокие прочность и жесткость при растяжении в этом направлении. Однако неоднородность структуры волокон обусловливает различные напряженные состояния в отдельных ее элементах. Между ними возникают напряжения сдвига, которые приводят сначала к расщеплению волокна вдоль оси, а затем - к разрушению. Такой механизм разрыва волокон вызывает большую работу разрушения композиционного материала в целом. Это характери­зует высокую прочность при статиче­ском и динамическом нагружении. Органоволокниты, особенно с эластичным наполнителем, имеют очень высокую ударную вязкость (600-700кДж/м2). Слабые межмолекулярные связи являются причиной низкой прочности и жесткости при сжатии. При этом предельная деформация при сжатии определяется не разрушением волокон, а их искривлением. Дополнительное ар­мирование органоволокнитов волокна­ми, затрудняющими это искривление, например, углеродными или борными, повышает прочность при сжатии.

Углеволокниты, боропластики, бороволокниты и органоволокниты применяют в авиации, космонавтике, ядерной технике.

Композиционные материалы на метал­лической основе

Композитные материалы с металлической матрицей. Для работы при более высоких температурах применяют ме­таллические матрицы.

Металлические КМ обладают рядом преимуществ перед поли­мерными. Помимо более высокой рабочей температуры, они ха­рактеризуются лучшей изотропией и большей стабильностью свойств в процессе эксплуатации, более высокой эрозионной стойкостью.

Пластичность металлических матриц сообщает конструкции необходимую вязкость. Это способствует быстрому выравниванию локальных механических нагрузок.

Важным преимуществом металлических КМ является более высокая технологичность процесса изготовления, формовки, тер­мообработки, формирования соединений и покрытий.

Преимуществом ком­позиционных материалов на металличе­ской основе являются более высокие значения характеристик, зависящих от свойств матрицы. Это прежде всего вре­менное сопротивление и модуль упруго­сти при растяжении в направлении, пер­пендикулярном оси армирующих воло­кон, прочность при сжатии и изгибе, пластичность, вязкость разрушения. Кроме того, композиционные мате­риалы с металлической матрицей сохра­няют свои прочностные характеристики до более высоких температур, чем мате­риалы с неметаллической основой. Они более влагостойки, негорючи, обладают электрической проводимостью. Высокая электропроводность металлических КМ хорошо за­щищает их от электромагнитного излучения, молнии, снижает опасность статического электричества. Высокая теплопроводность металлических КМ предохраняет от локальных перегревов, что особенно важно для таких изделий, как наконечники ракет и ведущие кромки крыльев.

Наиболее перспективными материала­ми для матриц металлических компози­ционных материалов являются ме­таллы, обладающие небольшой плот­ностью (А1, Мg, Тi), и сплавы на их основе, а также никель - широко приме­няемый в настоящее время в качестве основного компонента жаропрочных сплавов.

Композиты получают разными методами. К ним относятся пропитка пучка волокон жидкими расплавами алюминия и маг­ния, плазменное напыление, применение методов горячего прес­сования иногда с последующей гидроэкструзией или прокаткой заготовок. При армировании непрерывными волокнами компо­зиций типа "сэндвич", состоящих из чередующихся слоев алюми­ниевой фольги и волокон, применяют прокатку, горячее прессо­вание, сварку взрывом, диффузионную сварку. Отливку прутков и труб, армированных высокопрочными волокнами, получают из жидкометаллической фазы. Пучок волокон непрерывно про­ходит через ванну с расплавом и пропитывается под давлением жидким алюминием, или магнием. При выходе из пропиточной ванны волокна соединяются и пропускаются через фильеру, формирующую пруток или трубу. Этот метод обеспечивает мак­симальное наполнение композита волокнами (до 85 %), их одно­родное распределение в поперечном сечении и непрерывность процесса.

Материалы с алюминиевой матрицей. Материалы с алюминиевой матрицей в основном армируют стальной проволокой (КАС), борным волокном (ВКА)и углеродным волокном (ВКУ). В каче­стве матрицы используют как техниче­ский алюминий (например, АД1), так и сплавы (АМг6, В95, Д20 и др.).

Использование в качестве матрицы сплава (например, В95), упрочняемого термообработкой (закалка и старение), дает дополнительный эффект упрочне­ния композиции. Однако в направлении оси волокон он невелик, тогда как в поперечном направлении, где свойства определяются в основном свойствами матрицы, достигает 50%.

Наиболее дешевым, достаточно эф­фективным и доступным армирующим материалом является высокопрочная стальная проволока. Так, армирование технического алюминия проволокой из стали ВНС9 диаметром 0,15 мм (σв = 3600 МПа) увеличивает его про­чность в 10-12 раз при объемном со­держании волокна 25% и в 14-15 раз при увеличении содержания до 40%, по­сле чего временное сопротивление до­стигает соответственно 1000-1200 и 1450 МПа. Если для армирования ис­пользовать проволоку меньшего диаме­тра, т. е. большей прочности (σв = 4200 МПа), временное сопротивление композиционного материала увеличится до 1750 МПа. Таким образом, алюми­ний, армированный стальной проволо­кой (25-40%), по основным свойствам значительно превосходит даже высокопрочные алюминиевые сплавы и выхо­дит на уровень соответствующих свойств титановых сплавов. При этом плотность композиций находится в пределах 3900-4800 кг/м3.

Упрочнение алюминия и его сплавов более дорогими волокнами В, С, А12Оэ повышает стоимость композиционных материалов, но при этом эффективнее улучшаются некоторые свойства: напри­мер, при армировании борными волок­нами модуль упругости увеличивается а 3-4 раза, углеродные волокна способ­ствуют снижению плотности. Бор мало разупрочняется с повышением температуры, поэтому композиции, армированные борными волокнами, сохраняют высокую прочность до 400-500 °С Промышленное применение нашел материал, содержащий 50 об.% непрерывных высокопрочных и высокомодульных волокон бора (ВКА-1). По модулю упругости и временному сопротивлению в интервале температур 20-500°С он превосходит все стандартные алюминиевые сплавы, в том числе высокопрочные (В95), и сплавы, специально предназначенные для ра­боты при высоких температурах (АК4—1), что наглядно представлено на рис. 13.35. Высокая демпфирующая спо­собность материала обеспечивает ви­бропрочность изготовленных из него конструкций. Плотность сплава равна 2650 кг/м3, а удельная про­чность-45 км. Это значительно выше, чем у высокопрочных сталей и тита­новых сплавов.

Расчеты показали, что замена сплава В95 на титановый сплав при изготовле­нии лонжерона крыла самолета с под­крепляющими элементами из ВКА-1 увеличивает его жесткость на 45% и дает экономию в массе около 42%.

Композиционные материалы на алю­миниевой основе, армированные угле­родными волокнами (ВКУ), дешевле и легче, чем материалы с борными во­локнами. И хотя они уступают послед­ним по прочности, обладают близкой удельной прочностью (42 км). Однако изготовление композиционных материа­лов с углеродным упрочнителем связа­но с большими технологическими труд­ностями вследствие взаимодействия углерода с металлическими матрицами при нагреве, вызывающего снижение прочности материала. Для устранения этого недостатка применяют специальные покрытия углеродных воло­кон.

Материалы с магниевой матрицей. Материалы с магниевой матрицей(ВКМ) характеризуются меньшей плот­ностью (1800-2200 кг/м3), чем с алюми­ниевой, при примерно такой же высокой прочности 1000-1200 МПа и поэтому более высокой удельной прочностью. Деформируемые магниевые сплавы (МА2 и др), армированные борным во­локном (50 об. %), имеют удельную прочность > 50 км. Хорошая совместимость магния и его сплавов с борным волокном, с одной стороны, позволяет изготовлять детали методом пропитки практически без последующей механической обработки, с другой - обеспечивает большой ресурс работы деталей при повышенных температурах. Удельная прочность этих материалов повышается благодаря применению в качестве матрицы сплавов, легированных легким литием, а также в результате использования более легкого углеродного волокна. Но, как было указано ранее, введение углеродного волокна осложняет технологию и без того нетехнологичных сплавов. Как известно, магний и его сплавы обладают низкой технологической пластичностью, склонностью к образованию рыхлой оксидной пленки.

Композиционные материалы на титановой основе. При создании композиционных материалов на титановой основевстречаются трудности, вызванные необходимостью нагрева до высоких температур. При высоких температурах титановая матрица становится очень активной; она приобретает способность к газопоглощению, взаимодействию с многими упрочнителями: бором, карбидом кремния, оксидом алюминия и др. В результате образуются реакционные зоны, снижается прочность как самих волокон, так и композиционных материалов в целом. И, кроме того, высокие темпе­ратуры приводят к рекристаллизации и разупрочнению многих армирующих материалов, что снижает эффект упроч­нения от армирования. Поэтому для упрочнения материалов с титановой ма­трицей используют проволоку из берил­лия и керамических волокон тугоплав­ких оксидов (А1203), карбидов (SiС), а также тугоплавких металлов, обла­дающих большим модулем упругости и высокой температурой рекристаллиза­ции (Мо, W). Причем целью армирова­ния является в основном не повышение и без того высокой удельной прочности, а увеличение модуля упругости и повы­шение рабочих температур. Механиче­ские свойства титанового сплава ВТ6 (6 % А1, 4 % V, остальное А1), армирован­ного волокнами Мо, Ве и SiС, предста­влены в табл. 13.9. Как видно из. та­блицы, наиболее эффективно удельная жесткость повышается при армирова­нии волокнами карбида кремния.

Армирование сплава ВТ6 молибдено­вой проволокой способствует сохране­нию высоких значений модуля упруго­сти до 800 "С. Его величина при этой температуре соответствует 124 ГПа, т. е. снижается на 33%, тогда как вре­менное сопротивление разрыву при этом уменьшается до 420 МПа, т. е. бо­лее чем в 3 раза.

Компо­зиционные материалы на никелевой ос­нове. Жаропрочные КМ изготавливают на основе сплавов никеля и кобальта, упрочненных керамическими (SiC, Si3Ni4, Al2O3) и углеродными волокнами. Основная задача при создании компо­зиционных материалов на никелевой ос­нове(ВКН) заключается в повышении рабочих температур выше 1000 °С. И одним из лучших металлических упрочнителей, способных обеспечить хо­рошие показатели прочности при столь высоких температурах, является воль­фрамовая проволока. Введение вольфра­мовой проволоки в количестве от 40 до 70 об.% в сплав никеля с хромом обес­печивает прочность при 1100°С в тече­ние 100 ч соответственно 130 и 250 МПа, тогда как лучший неармированный никелевый сплав, предназна­ченный для работы в аналогичных усло­виях, имеет прочность 75 МПа. Исполь­зование для армирования проволоки из сплавов вольфрама с рением или гаф­нием увеличивает этот показатель на 30-50%.

Композиционные материалы приме­няют во многих отраслях промышлен­ности и прежде всего в авиации, ракет­ной и космической технике, где особен­но большое значение имеет снижение массы конструкций при одновременном повышении прочности и жесткости. Бла­годаря высоким удельным характеристикам прочности и жесткости их ис­пользуют при изготовлении, например, горизонтальных стабилизаторов и за­крылков самолетов, лопастей винтов и контейнеров вертолетов, корпусов и камер сгорания реактивных двигате­лей и др. Использование компози­ционных материалов в конструкциях ле­тательных аппаратов уменьшило их массу на 30-40%, увеличило полезную нагрузку без снижения скорости и даль­ности полета.

В настоящее время композиционные материалы применяют в энергетическом турбостроении (рабочие и сопловые ло­патки турбины), автомобилестроении (кузова автомобилей и рефрижераторов, детали двигателей), машиностроении (корпуса и детали машин), химической промышленности (автоклавы, цистерны, емкости), судостроении, (корпуса лодок, катеров, гребные винты) и др.

Особые свойства композиционных материалов позволяют использовать их в качестве электроизоляционных мате­риалов (органоволокниты), радиопроз­рачных обтекателей (стекловолокниты), подшипников скольжения (карбоволокниты) и других деталей.

Композитные материалы с керамической матрицей. Для наиболее высоких рабочих температур в качестве матрич­ного материала применяют керамику. В качестве керамических матриц используют силикатные (SiO2), алюмосиликатные (Al2O3 - SiO2), алюмоборосиликатные (Al2O3 - B2O3 - SiO2) материалы, тугоплавкие оксиды алюминия (Al2O3), циркония (ZrO2), бериллия (BeO), нитрид кремния (Si3N4), бориды титана (TiB2) и циркония (ZrB2), карбиды кремния (SiC) и титана (TiC). Композиты с керамической матрицей обладают высокими температурой плавления, стойкостью к окислению, термоударам и вибрации, прочностью при сжатии. Керамические КМ на основе карбидов и оксидов с добавками металлического порошка (< 50об. %) называются керметами. Помимо порошков для армирования керамических КМ используют металлическую проволоку из вольфрама, молибдена, ниобия, жаропрочной стали, а также неметаллические волокна (керамические и углеродные). Использование металлической проволоки создает пластичный каркас, предохраняющий КМ от разрушения при растрескивании хрупкой керамической матрицы. Недостатком керамических КМ, армированных металлическими волокнами, является низкая жаростойкость. Высокой жаростойкостью обладают КМ с матрицей из тугоплавких оксидов (можно использовать до 1000 °C), боридов и нитридов (до 2000°C), карбидов (свыше 2000°C). При армировании керамических КМ волокнами карбида кремния достигается высокая прочность связи между ними и матрицей в сочетании со стойкостью к окислению при высоких температурах, что позволяет использовать их для изготовления тяжелонагруженных деталей (высокотемпературные подшипники, уплотнения, рабочие лопатки газотурбинных двигателей и др.). Основной недостаток керамики - отсутствие пластичности - в некоторой степени компенсируется армирующими волокнами, тормозящими распространение тре­щин в керамике.

Углерод-углеродный композит. Использование в качестве матричного материала аморфного углерода, а в качестве армирующего материала - волокон из кри­сталлического углерода (графита) позволило создать композит, выдерживающий нагрев до 2500 °С. Такой углерод-углеродный композит перспективен для космонавтики и заатмосферной авиации. Недостаток углеродной матрицы состоит в возможном окислении и абляции. Для предотвращения этих явлений композит покрывают тонким слоем карбида кремния.

Углеродная матри­ца, подобная по физико-химическим свойствам углеродному волокну, обес­печивает термостойкость УУКМ

Наиболее широкое применение нашли два способа получения углерод-углеродных композитов:

1. карбонизация полимерной матрицы заранее сформованной углепластиковой заготовки путем высоко­температурной термообработки в неокисляющей среде;

2. осаждение из га­зовой фазы пироуглерода, образую­щегося при термическом разложении углеводородов в порах углеволокнистой подложки.

Оба эти способа имеют свои достоин­ства и недостатки. При создании УУКМ их часто комбинируют для придания композиту необходимых свойств.

Карбонизация полимерной матрицы. Процесс карбонизации представляет собой термообработку изделия из углепластика до темпера­туры 1073 К в неокисляющей среде (инертный газ, угольная засыпка и т.д.). Цель термообработки — пере­вод связующего в кокс. В процессе карбонизации происходит термоде­струкция матрицы, сопровождающаяся потерей массы, усадкой, образованием большого числа пор и снижением вследствие этого физико-механических свойств композита.

Карбонизация проводится чаще всего в ретортных печах сопротивления. Реторта, изготовленная из жаропроч­ного сплава, предохраняет изделие от окисления кислородом воздуха, а нагревательные элементы и изоля­цию — от попадания на них летучих коррозионно-активных продуктов пи­ролиза связующего и обеспечивает равномерность обогрева реакционного объема печи.

Механизм и кинетика карбонизации определяются соотношением скоростей диссоциации химических связей и ре­комбинации образовавшихся радика­лов. Процесс сопровождается удале­нием испаряющихся смолистых соеди­нений и газообразных продуктов и образованием твердого кокса, обога­щающегося атомами углерода. Поэтому в процессе карбонизации ключевым моментом является выбор температурно-временного режима, который дол­жен обеспечивать максимальное об­разование коксового остатка из свя­зующего, поскольку механическая прочность карбонизованного компо­зита зависит, помимо прочего, от ко­личества образовавшегося кокса.

Чем больше габариты изделия, тем продолжительнее должен быть процесс карбонизации. Скорость подъема температуры при карбони­зации — от нескольких градусов до нескольких десятков градусов в час, продолжительность процесса карбони­зации 300 ч и более. Карбонизация заканчивается обычно в интервале температур 1073—1773 К, соответ­ствующих температурному интервалу перехода углерода в графит.

Свойства УУКМ в значительной мере зависят от вида исходного свя­зующего, в качестве которого приме­няются синтетические органические смолы, дающие высокий коксовый остаток. Чаще всего для этой цели применяют фенолформальдегидные смолы вследствие их технологичности, доступности низкой стоимости, образовавшийся в этом процессе кокс обладает высокой проч­ностью.

Фенолформальдегидным смолам свой­ственны определенные недостатки. Вследствие поликонденсационного ха­рактера их отверждения и выделения при этом летучих соединений трудно получить однородную плотную струк­туру. Величина усадки при карбонизации фенолформальдегидных связующих больше, чем для других типов связую­щих, применяемых при производстве УУКМ, что приводит к возникновению внутренних напряжений в карбонизованном композите и снижению его физико-механических свойств.

Более плотный кокс дают фурановые связующие. Усадка их при карбони­зации меньше, а прочность кокса вы­ше, чем у фенолформальдегидных смол. Поэтому, несмотря на более сложный цикл отверждения, связующие на ос­нове фурфурола, фурфурилиденацетонов, фурилового спирта также приме­няются при производстве УУКМ.

Весьма перспективны для получения углеродной матрицы каменноугольные и нефтяные пеки вследствие большого содержания углерода (до 92—95%) и высокого коксового числа. Преиму­ществами пеков перед другими свя­зующими являются доступность и низ­кая стоимость, исключение раствори­теля из технологического процесса, хорошая графитируемость кокса и его высокая плотность. К недостаткам пеков можно отнести об­разование значительной пористости, деформацию изделия, нали­чие в их составе канцерогенных соеди­нений, что требует дополнительных мер безопасности.

Вследствие выделения летучих со­единений при термодеструкции смолы в карбонизованном пластике возникает значительная пористость, снижающая физико-механические свойства УУКМ. Поэтому стадией карбонизации угле­пластика завершается процесс полу­чения лишь пористых материалов, для которых не требуется высокая проч­ность, например, низкоплотных УУКМ теплоизоляционного назначения. Обыч­но для устранения пористости и повы­шения плотности карбонизованный ма­териал вновь пропитывается связую­щим и карбонизуется (этот цикл может повторяться неоднократно). Повтор­ная пропитка производится в автокла­вах в режиме «вакуум—давление», т. е. сначала заготовка нагревается в ва­кууме, после чего подается связующее и создается избыточное давление до 0,6—1,0 МПа. При пропитке исполь­зуются растворы и расплавы связую­щих, причем пористость композита с каждым циклом уменьшается, по­этому необходимо использовать свя­зующие с пониженной вязкостью. Сте­пень уплотнения при повторной про­питке зависит от типа связующего, коксового числа, пористости изделия и степени заполнения пор. С ростом плотности при повторной пропитке повышается и прочность материала. Этим методом можно получать УУКМ с плотностью до 1800 кг/м3 и выше. Метод карбонизации углепластика сравнительно прост, он не требует сложной аппаратуры, обеспечивает хо­рошую воспроизводимость свойств ма­териала получаемых изделий. Однако необходимость многократного проведе­ния операций уплотнения значительно удлиняет и удорожает процесс полу­чения изделий из УУКМ, что является серьезным недостатком указанного ме­тода.

При получении УУКМ по способу осаждения пироуглерода из газовой фазы газообразный углеводород (метан, бензол, ацетилен и т. д.) или смесь углеводорода и разбавляющего газа (инертный газ или водород) диффунди­рует через углеволокнистый пористый каркас, где под действием высокой тем­пературы происходит разложение угле­водорода на нагретой поверхности волокна. Осаждающийся пироуглерод постепенно создает соединительные мо­стики между волокнами. Кинетика осаждения и структура получаемого пироуглерода зависят от многих фак­торов: температуры, скорости потока газа, давления, реакционного объема и др. Свойства получаемых композитов определяются также типом и содержа­нием волокна, схемой армирования.

Процесс осаждения проводится в вакууме или под давлением в индук­ционных печах, а также в печах со­противления.

Разработано несколько технологиче­ских методов получения пироуглеродной матрицы.

При изотермическом методе заго­товка находится в равномерно обо­греваемой камере. Равномерность обо­грева в индукционной печи обеспечи­вается с помощью тепловыделяющего элемента — сусцептора, изготавливае­мого из графита. Углеводородный газ подается через днище печи и диффун­дирует через реакционный объем и заготовку; газообразные продукты ре­акции удаляются через выходное от­верстие в крышке печи.

Процесс производится обычно при температуре 1173—1423 К и давлении 130—2000 кПа. Уменьшение темпе­ратуры приводит к снижению скорости осаждения и чрезмерному удлинению продолжительности процесса. Увели­чение температуры ускоряет осажде­ние пироуглерода, но при этом газ не успевает диффундировать в объем заготовки и происходит поверхностное наслоение пироуглерода. Продолжи­тельность процесса достигает сотен часов.

Изотермический метод обычно при­меняется для изготовления тонкостен­ных деталей, поскольку в этом случае заполняются преимущественно поры, находящиеся у поверхности изделия.

Для объемного насыщения пор и получения толстостенных изделий при­меняется неизотермический метод, за­ключающийся в создании в заготовке температурного градиента путем по­мещения ее на обогреваемую оправку или сердечник или прямым разогревом ее током. Углеводородный газ подается со стороны, имеющей более низкую температуру. Давление в печи обычно равно атмосферному. В результате осаждение пироуглерода происходит в наиболее горячей зоне. Охлаждающее действие газа, протекающего над по­верхностью с высокой скоростью, яв­ляется основным способом достижения температурного градиента.

Повышение плотности и теплопровод­ности композита приводит к перемеще­нию температурного фронта осажде­ния, что обеспечивает в конечном итоге объемное уплотнение материала и полу­чение изделий с высокой плотностью (1700—1800 кг/м3).

Для изотермического метода полу­чения УУКМ с пироуглеродной матри­цей характерны следующие достоин­ства: хорошая воспроизводимость свойств; простота технического оформ­ления; высокая плотность и хорошая графитируемость матрицы; возмож­ность обработки одновременно не­скольких изделий.

К недостаткам относятся: малая скорость осаждения; поверхностное осаждение пироуглерода; плохое за­полнение крупных пор.

Неизотермический метод имеет такие достоинства: большую скорость осаж­дения; возможность заполнения круп­ных пор; объемное уплотнение изде­лия.

Его недостатки заключаются в сле­дующем: сложное аппаратурное оформ­ление; обрабатывается лишь одно изделие; недостаточная плотность и графитируемость матрицы; образование микротрещин.

3.4.4. Высокотемпературная термо­обработка (графитация) УУКМ. Струк­тура карбонизованных пластиков и композитов с пироуглеродной матри­цей после уплотнения из газовой фазы несовершенна. Межслоевое расстоя­ние d002, характеризующее степень упорядоченности углеродной матри­цы, относительно велико — свыше 3,44·104 мкм, а размеры кристаллов сравнительно малы — обычно не более 5·10-3 мкм, что характерно для двух­мерного упорядочения базисных слоев углерода. Кроме того, в ходе процесса получения в них могут возникать внутренние напряжения, способные привести к деформациям и искажениям структуры изделия при эксплуатации этих материалов при температуре выше температуры карбонизации или осаж­дения пироуглерода. Поэтому при необходимости получения более термо­стабильного материала проводят его высокотемпературную обработку. Ко­нечная температура термообработки определяется условиями эксплуатации, но лимитируется сублимацией мате­риала, которая интенсивно протекает при температуре свыше 3273 К. Термо­обработка проводится в индукционных печах или печах сопротивления в неокисляющей среде (графитовая засыпка, вакуум, инертный газ). Изменение свойств углерод-углеродных материалов в процессе высокотемпературной термообработки опре­деляется многими факторами: типом наполнителя и матрицы, конечной температурой и продолжительностью термообработки, видом среды и ее давлением и еще другими факторами. При высоких температурах преодоле­ваются энергетические барьеры в уг­леродном материале, препятствующие перемещению многоядерных соедине­ний, их присоединению и взаимной переориентации с большей степенью уплотнения.

Длительность этих процессов неве­лика и степень превращения опреде­ляется в основном температурой. Поэ­тому длительность процессов высоко­температурной термообработки значи­тельно меньше, чем в случае карбони­зации или осаждения пироуглерода, и составляет обычно несколько часов. При высокотемпературной термообра­ботке карбонизованных пластиков происходят необратимые деформации изделия, постепенное «залечивание» де­фектов. Для хорошо графитируемых материалов на основе пеков при тем­пературах свыше 2473 К наблюдается интенсивный рост трехмерноупорядоченных углеродных кристаллитов вплоть до перехода к графитовой струк­туре. В то же время в карбонизован­ных пластиках на основе плохо графитирующихся полимерных связую­щих дефекты структуры сохраняются до 3273 К и материал остается в неграфитированной структур­ной форме.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: