Студопедия
Обратная связь


Авиадвигателестроения Административное право Административное право Беларусии Алгебра Архитектура Безопасность жизнедеятельности Введение в профессию «психолог» Введение в экономику культуры Высшая математика Геология Геоморфология Гидрология и гидрометрии Гидросистемы и гидромашины История Украины Культурология Культурология Логика Маркетинг Машиностроение Медицинская психология Менеджмент Металлы и сварка Методы и средства измерений электрических величин Мировая экономика Начертательная геометрия Основы экономической теории Охрана труда Пожарная тактика Процессы и структуры мышления Профессиональная психология Психология Психология менеджмента Современные фундаментальные и прикладные исследования в приборостроении Социальная психология Социально-философская проблематика Социология Статистика Теоретические основы информатики Теория автоматического регулирования Теория вероятности Транспортное право Туроператор Уголовное право Уголовный процесс Управление современным производством Физика Физические явления Философия Холодильные установки Экология Экономика История экономики Основы экономики Экономика предприятия Экономическая история Экономическая теория Экономический анализ Развитие экономики ЕС Чрезвычайные ситуации ВКонтакте Одноклассники Мой Мир Фейсбук LiveJournal Instagram 500-летие Реформации

Загрузка...

Гидростатическое давление и его свойства

Как известно, в покоящейся жидкости возможен лишь один вид напряжений – напряжения сжатия, т. е. гидростатическое давление.
Гидростатическое давление в жидкости имеет следующие два свойства:

  1. На внешней поверхности гидростатическое давление всегда направлено по нормали, внутрь рассматриваемого объема жидкости.
    Это свойство непосредственно вытекает из определения давления как напряжения от нормальной сжимающей силы. Под внешней поверхностью жидкости понимают не только поверхности раздела жидкости с газообразной средой или твердыми стенками, но и поверхности элементарных объемов, мысленно выделяемых из общего объема жидкости.
  2. В любой точке внутри жидкости гидростатическое давление по всем направлениям одинаково, т. е. давление не зависит от угла наклона площадки, на которую оно действует в данной точке. Для доказательства этого свойства выделим в неподвижной жидкости элементарный объем в форме прямоугольного тетраэдра с ребрами, параллельными координатным осям и соответственно равными dx, dy и dz ( рис. 2.1).

 

Рис. 2.1

Пусть на выделенный объем жидкости действует единичная массовая сила, составляющие которой равны X,Y и Z. Обозначим через px гидростатическое давление, действующее на грань, нормальную к оси 0x, через py давление, действующее на грань, нормальную к оси 0y, и т. д.

Гидростатическое давление, действующее на наклонную грань, обозначим через pn, а площадь этой грани – через dS. Все эти давления направлены по нормалям к соответствующим площадкам.

Составим уравнения равновесия выделенного объема жидкости сначала в направлении оси 0x.

Проекция сил давления на ось 0x равна

Масса тетраэдра равна произведению его объема на плотность, т. е. , следовательно, массовая сила, действующая на тетраэдр вдоль оси 0x, равна

Уравнения равновесия тетраэдра запишем в следующем виде:

Разделим это уравнение почленно на площадь , которая равна площади проекции наклонной грани dS на плоскость y0z, и, следовательно,

Будем иметь

При стремлении размеров тетраэдра к нулю последний член уравнения, содержащий множитель dx, будет также стремиться к нулю, а давления px и pn будут оставаться конечными величинами. Следовательно, в пределе получим, что px - pn =0 или px = pn. Аналогично составляя уравнения равновесия вдоль осей 0y и 0z, после таких же рассуждений получим, что py = pn, pz = pn, т. е.

px = py = pz = pn                                        (2.1)

Так как размеры тетраэдра dx, dy и dz были взяты произвольно, то и наклон площадки dS произволен, и, следовательно, в пределе при стягивании тетраэдра в точку давление в этой точке по всем направлениям будет одинаково.

Рассмотренное свойство давления в неподвижной жидкости имеет место также при движении идеальной жидкости. При движении же реальной жидкости возникают касательные напряжения, вследствие чего давление в реальной жидкости указанным свойством, строго говоря, не обладает.





 

Читайте также:

Машина с поворотным диском и косой шайбой

Уравнение Бернулли для струйки идеальной жидкости

Пьезометрическая высота. Вакуум. Измерение давления

Турбулентное течение в каналах постоянного сечения

Начальный участок ламинарного течения

Вернуться в оглавление: Гидросистемы и гидромашины

Просмотров: 13569

 
 

54.156.32.65 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам.