Что такое ферменты? Роль ферментов в организме человека

Название фермент произошло от латинского слова "fermentum" -закваска. Синонимом этого слова является энзим от греческого слова "еп zyme" - в дрожжах. Характерно, что оба корня связаны с дрожжевым брожением, которое невозможно без участия биологических субстанций, которые играют ключевую роль в бродильных процессах, представляющих собой химические реакции, связанные с перевариванием и расщеплением сахаров.

Первым термин "фермент" предложил голландский естествоиспытатель Ван-Гельмонт, обозначивший им неизвестный агент, способствующий спиртовому брожению. Луи Пастер, наблюдая процессы брожения, считал, что ферменты являются компонентами живых клеток. В 1871 году немецкий химик Бюхнер подтвердил возможность работы ферментов вне живых клеток, а другой немецкий ученый Кюне в 1878 году предложил обозначать внеклеточные ферменты термином " энзим ".

В 1920-х годах XX века после подтверждения белковой природы ферментов были получены их кристаллические формы: уреаза (1926) - фермент, расщепляющий мочевину, и фермент желудка пепсин (1930).

По своей природе ферменты являются биологическими катализаторами (ускорителями) химических (биохимических) реакций, которые протекают не только в живых системах - внутри клеток. Часть ферментов находится на поверхности плазматической мембраны клетки, другие ферменты могут секретироваться за пределы клетки или попадают туда при гибели и разрушении клеток.

Химические реакции могут протекать и без участия ферментов, но часто для этого требуются определенные условия: высокая температура или давление, присутствие в среде некоторых металлов, например, железа, цинка, меди, платины, которые также могут выступать в качестве катализаторов -ускорителей химических реакций. Скорость химических реакций без участия катализаторов ничтожно мала.

Ферменты не только снимают большинство этих ограничений, но и существенно увеличивают скорость химических реакций. Другое важное свойство ферментов заключается в том, что они упорядочивают и регулируют течение биохимических реакций в живой клетке или за ее пределами - в кровеносной системе и тканях организма. Последнее становится возможным благодаря тому, что на ферменты можно оказывать влияние (активно или пассивно), регулируя их работу.

В живой природе известно более 4 ООО различного рода ферментов, которые можно разделить на 6 основных групп. Подавляющее большинство ферментов (более 90%) являются гидролазами (разрушителями различных молекул), раскалывающими их пополам или отщепляющими от них мелкие фрагменты. Но есть ферменты, которые восстанавливают разрушенное или собирают разные молекулы или атомы вместе. Эти ферменты называются синтетазы.

Другие ферменты могут перемещать (транспортировать) фрагменты от одних молекул к другим. Их называют трансферазы.

Окислительно-восстановительные реакции в клетке поддерживают ферменты-оксиредуктазы.

Изомеразы способны изменить пространственную конфигурацию или геометрию молекул, а лиазы способны формировать в молекуле двойную связь.

Многие ферменты могут работать в обоих направлениях, в зависимости от обстоятельств, расщепляя биомолекулу на фрагменты или вновь соединяя вместе продукты распада.

Например, известный фермент алкогольдегидрогеназа обладает способностью не только расщеплять этиловый спирт на ацетальдегид и воду, но и превращать ацетальдегид в этиловый спирт, инактивируя избыток ацетальдегида, который образуется в организме в результате других биохимических реакций и является крайне токсичным.

Все ферменты являются белками - линейными полимерами, собранными из аминокислот. В состав многих ферментов также могут входить простые или разветвленные цепочки различных моносахаров. Полимерная белковая или гликопротеиновая цепочка обычно закручена и образует сложную трехмерную конфигурацию, которая устойчива в небольшом диапазоне температур, при которых существуют живые клетки.

Все ферменты имеют разную длину полимерной цепочки, и, стало быть, разную молекулярную массу. Чем больше молекулярная масса фермента, тем продолжительнее и сложнее его биосинтез, тем больше вероятность в возникновении различного рода нарушений в его структуре при биосинтезе, тем меньшей устойчивостью он обладает в работе.

Среди кишечных ферментов, таких, как сахараза, малътаза, лактаза, щелочная фосфатаза, дипептидаза, самым крупным ферментом является лактаза, которая расщепляет молочный сахар - лактозу.

Этот фермент и страдает в первую очередь при различных воспалительных или деструктивных поражениях тонкой кишки, вызывая лактазную недостаточность, которая приводит к непереносимости молока.

Все биохимические реакции с участием ферментов происходят в водной среде, в которой, как в коконе, находится наш организм. Часть ферментов входит в состав плазматической мембраны клеток, другие находятся и работают внутри клеток, третьи секретируются клетками и выходят в межклеточное пространство органов и тканей, попадают в кровеносную и лимфатическую систему или в просвет желудка, тонкой и толстой кишки, работая за пределами клеток.

Для работы большинства ферментов необходимы так называемые кофакторы или коферменты, которые входят в состав активного центра фермента и обеспечивают его работу. К числу коферментов относятся почти все витамины, а также некоторые другие органические молекулы, например, известный " коэнзим Q10 ", который является важнейшим коферментом.

В состав активных центров ферментов могут входить некоторые микроэлементы (медь, железо, цинк, никель, селен, кобальт, марганец и др.). Важную роль в процессах биологического катализа играют металлы с переменной валентностью (медь, железо, хром и др.), которые обладают способностью быстро отдавать или забирать электрон. Поэтому, например, железо входит в состав важных окислительных ферментов - каталазы, пероксидазы, цитохромов.

Участие различных микроэлементов в качестве катализаторов химических реакций, строго специфично и основано на определенных и неповторимых химических свойствах каждого из них.

Например, цинк способен не только разрывать химические связи между атомами углерода и азота, но и соединить между собой эти атомы, благодаря чему из аминокислот образуются белковые молекулы. В то же время цинк способен соединять между собой атомы кислорода и азота, а также атомы серы.

Медь обладает способностью разрывать или образовывать связи между атомами углерода и серы.

Однако только кобальт способен разрушить и образовать химическую связь между атомами углерода.

Молибден в живой природе входит в состав азотфиксирующих ферментов и способен переводить в связанное состояние атмосферный азот, который является достаточно инертным веществом и в таком виде с большим трудом вступает в биохимические реакции. В организме человека молибден также участвует в окислении альдегидов.

Коферменты разрушаются при разрушении ферментов.

Поэтому для успешной работы ферментов необходимо постоянное и непрерывное поступление в организм витаминов и минералов в составе пищи.

Только в этом случае ферменты и ферментные системы организма будут работать нормально.

Следует подчеркнуть, что ферменты - это продукты одноразового действия и работают они очень короткий промежуток времени - от нескольких минут до нескольких часов, иногда они могут сохранять активность в течение нескольких суток, после чего инактивируются или разрушаются и теряют свою активность. Поэтому в организме происходит непрерывное обновление и наработка новых порций ферментов. Поэтому работа ферментов зависит не только от них самих, но и от того, как быстро и в каком количестве они будут выработаны - то есть будет зависеть от состояния белоксинтезирующих систем клетки.

А, поскольку все ферменты являются белками, то для их биосинтеза требуется постоянный приток определенных аминокислот. Дефицит белка в питании и нехватка незаменимых аминокислот всегда будет отражаться на работе ферментов. Поэтому в составе нашего правильного питания, должно быть достаточное количество сбалансированного по аминокислотному составу белка.

В организме человека насчитывают около 3 ООО различных ферментов, структура которых закодирована в нашем геноме. Для того чтобы синтезировать какой-либо фермент необходимо считать информацию с генетической матрицы ДНК (этот процесс называется транскриптцией) и перенести эту информацию на информационную РНК. С ее помощью в клетке с участием особых субклеточных структур - рибосом может быть начат биосинтез белка-фермента. По окончанию биосинтеза фермента, как правило, образуется неактивный профермент, часто лишенный и кофермента. В процессе транспорта профермента в клетке, в состав клеточной мембраны или за пределы клетки происходит достройка (встраивание углеводной составляющей) и активация фермента. Только после этого получается активный фермент, который может начать работать.

Работа любого фермента складывается из простой последовательности операций. Она начинается со связывания фермента с веществом, которое он должен преобразовать. Это вещество называется субстратом. Все ферменты высокоспецифичны по отношению к субстратам. Некоторые из ферментов катализируют превращение единственного субстрата.

Например, лактаза может расщеплять только один молочный сахар (лактозу), но не способна расщеплять сахарозу или мальтозу.

Другие ферменты как, например, папаин обладают более широкой субстратной специфичность и могут расщеплять разные связи в молекулах разных белков.

Кода субстрат связывается с активным центром фермента, происходит его химическое преобразование, в результате которого образуется продукт реакции (или метаболит). В процессе работы фермента на него могут оказывать влияние активаторы или ингибиторы. Первые ускоряют его работу, а последние - тормозят.

Избыток продукта ферментативной реакции также может остановить работу фермента или повернуть его работу вспять. Фермент может закончить свое существование после того, как подвергнется атаке со стороны протеолитических ферментов, которые могут вызвать его инактивацию или полное разрушение (переваривание до аминокислот)

Основной функциональной характеристикой фермента является активность - скорость, с которой он работает, разрушая, трансформируя или синтезируя те или иные вещества. Активность ферментов зависит от очень многих внешних факторов: температуры, кислотности среды (рН), количества субстратов реакции или ее продуктов.

При понижении температуры и приближении ее к 0° С скорость химических реакций уменьшается и останавливается при замерзании воды.

При повышении температуры скорость химических реакций сначала увеличивается, но затем начинает уменьшаться, поскольку при высоких температурах (50-100° С) происходит денатурация (разрушение) белковых молекул фермента.

Все ферменты работают с разной скоростью. Например, фермент лизоцим осуществляет 30 операций в минуту, а мембранный фермент карбоангидраза - 36 миллионов операций в минуту!

Скорость работы фермента величина переменная. При изучении работы различных ферментов мы сталкиваемся с очень большим разбросом параметров, которые отражают очень разную скорость их работы (ферментативную активность). Причина различий в ферментативной активности заключается не только в том, что работает неодинаковое количество ферментов.

Активность фермента во многом зависит от его структуры. Часто небольшие изменения в составе аминокислот, которые, как правило, являются результатом генетических мутаций или вызваны сбоями при биосинтезе, могут существенным образом изменить свойства фермента или привести к полной потере активности. По этой и другим причинам у разных людей активность ферментов может существенным образом различаться. На активность ферментов влияют и регуляторные факторы, а также условия, в которых работает тот или иной фермент.

Мы знаем о мутациях в геноме человека. Эти мутации, число которых исключительно велико в геноме всех живых организмов, в том числе и у человека, приводят к изменению последовательности нуклеотидов в цепочке ДНК. В конечном итоге эти изменения лежат в основе различий в аминокислотной последовательности белковых макромолекул, что и отражается на свойствах ферментов.

Крайним вариантом негативных мутаций в геноме может быть очень низкая или полная потеря активности фермента, что может привести к летальным последствиям или тяжелым заболеваниям. В этом случае говорят об энзимо - или ферментопатии, которая, носит характер наследственного заболевания.

Но, как правило, подавляющее большинство мутаций вызывает те или иные изменения свойств ферментов, которые отражаются на его активности или регуляторных свойствах. Но есть случаи, когда активность ферментов может значительно возрастать, что также нельзя считать нормальным явлением.

Активностью любого фермента можно управлять, что и происходит в живых системах. Существует несколько ступеней управления ферментами.

Первая ступень управления работает на уровне генома, который выдает информацию, необходимую для биосинтеза ферментов, и регулирует выдачу этой информации.

Вторая ступень управления работает на уровне биосинтеза ферментов в клетке, регулируя выработку ферментов, перенос ферментов туда, где они будут работать, или, регулируя численность клеток, которые производят тот или иной фермент.

И, наконец, третья ступень управления работает на уровне регуляции активности ферментов в процессе его работы, ускоряя (активируя), замедляя (ингибируя) или разрушая (инактивируя) ферменты.

Но управлять ферментами можно и извне, например, с помощью правильного питания, регулируя поступление в организм: белка или необходимых для его биосинтеза аминокислот, витаминов-коферментов, микроэлементов, пищевых субстратов.

Или, напротив, тормозить работу ферментов с помощью пищевых ингибиторов ферментов. Можно также доставлять в организм, например, вместе с пищей готовые ферменты, которые будут работать в желудочно-кишечном тракте (ЖКТ) или во внутренней среде организма, как системные ферменты. Можно вводить в организм бактерии-сапрофиты (пробиотики), которые будут вырабатывать дополнительное количество необходимых ферментов, а можно вводить в организм пищевые вещества (пребиотики), которые являются источниками питания для кишечных микроорганизмов и будут увеличивать численность этих бактерий-симбионтов (полезных бактерий) и их ферментов.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: