Основные виды изоляции

Изоляция высоковольтных конструкций подразделяется на внешнюю и внутреннюю.

Внешней изоляцией называются части изоляционной конструкции, в которых изолирующей средой является атмосферный воздух, в том числе у поверхности твердого диэлектрика. Электрическая прочность внешней изоляции зависит от атмосферных и других внешних условий. Несмотря на его сравнительно низкую электрическую прочность всего Епр=1−30 кВ/см, воздушная изоляция имеет ряд достоинств: малая стоимость, отсутствие старения, способность восстанавливать свои изолирующие свойства после погасания разряда.

Внутренней изоляцией называются части изоляционной конструкции, в которых изолирующей средой являются жидкие, твердые или газообразные диэлектрики или их комбинации, не имеющие прямых контактов с атмосферным воздухом.

Длительная практика создания и эксплуатации различного высоковольтного оборудования показывает, что во многих случаях весь комплекс требований наилучшим образом удовлетворяется при использовании в составе внутренней изоляции комбинации из нескольких материалов, дополняющих друг друга и выполняющих несколько различные функции. Так только твердые диэлектрические материалы обеспечивают механическую прочность изоляционной конструкции; обычно они имеют и наиболее высокую электрическую прочность. Высокопрочные газы и жидкие диэлектрики легко заполняют изоляционные промежутки любой конфигурации, в том числе тончайшие зазоры, поры и щели, чем существенно повышают электрическую прочность, особенно длительную.

Наиболее широкое распространение получили следующие виды изоляции.

Бумажно-пропитанная изоляция. Исходными материалами для изготовления бумажно-пропитанной изоляции (БПИ) служат специальные электроизоляционные бумаги и минеральные (нефтяные) масла (бумажно-масляная изоляция) или синтетические жидкие диэлектрики.

Бумажно-пленочная изоляция обладает более высокой кратковременной и длительной электрической прочность. Недостатками БПИ являются невысокая допустимая рабочая температура (не более 90 °С) и горючесть.

Маслобарьерная изоляция (МБИ). Основу этой изоляции составляет минеральное трансформаторное масло, которое надежно заполняет изоляционные промежутки между электродами любой сложной формы и обеспечивает хорошее охлаждение конструкции за счет конвективного или принудительного движения.

Достоинствами МБИ являются относительная простота конструкции и технологии, интенсивное охлаждение активных частей оборудования, а также возможность восстановления качества изоляции в эксплуатации путем сушки и замены масла.

Основные недостатки МБИ − меньшая, чем у бумажно-масляной изоляции, электрическая прочность, пожаро-и взрывоопасность конструкции. Маслобарьерная изоляция используется в качестве главной в силовых трансформаторах от 10 до 1150 кВ, в автотрансформаторах и реакторах высших классов напряжения.

Изоляция на основе слюды. На основе слюды выполняется высоковольтная изоляция класса нагревостойкости В с допустимой рабочей температурой 130 °С для статорных обмоток крупных электрических машин. Основными исходными материалами служат микалента или стеклослюдинитовая лента.

Пластмассовая изоляция в промышленных масштабах используется пока только в силовых кабелях на напряжения до 220 кВ и в импульсных кабелях. Основным диэлектрическим материалом в этих случаях является полиэтилен низкой и высокой плотности.

Газовая изоляция. Для выполнения газовой изоляции в высоковольтных конструкциях используются азот, двуокись углерода и элегаз. Наиболее перспективным является элегаз. Он имеет наибольшую среди указанных газов электрическую прочность, высокие дугогасящие свойства и является хорошей теплоотводящей средой. Основной областью применения элегазовой изоляции являются герметизированные распределительные устройств (ГРУ) на напряжения 110 кВ и выше.

На оборудование, работающее в электрических сетях, воздействуют следующие виды напряжения: рабочее напряжение; внутренние перенапряжения; грозовые перенапряжения.

Рабочее напряжение. В России электрические сети подразделяютсяна классы напряжения, которые совпадают с номинальным линейным напряжением сети Uном. ГОСТ 1516.3-96 устанавливает для каждого класса напряжения наибольшее рабочее напряжение (линейное) Uраб.наиб, которое равно Uраб.наиб = kp∙Uном, причемзначение kpпринимается 1,05−1,2.

Внутренние перенапряжения. Наиболее важной характеристикой перенапряжения является максимальное значение Umax или кратность kn по отношению к амплитуде наибольшего рабочего фазного напряжения Uраб.наиб

Для оборудования подстанций вводится понятие о расчетной кратности внутренних перенапряжений kpк., для которой появление перенапряжений с большей кратностью маловероятно (1 раз в 50−100 лет). Значение расчетной кратности внутренних перенапряжений выбирается из технико-экономических соображений с учетом характеристик защитных устройств.

Грозовые перенапряжения. При ударе молнии в провод линии электропередачи или при ударе молнии в грозозащитный трос или опору и перекрытии гирлянды изоляторов с опоры на провод по проводу начинает распространяться волна, набегающая на подстанцию. Расчетные значения напряжений, воздействующих на изоляцию оборудования при грозовых перенапряжениях Uвозд. гроз = kгроз∙Uост. разр, где Uост. разр − остаюшееся напряжение на разряднике при токах координации; kгроз − коэффициент, учитывающий перепад напряжения между разрядником (ОПН) и защищенным объектом.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: