Температура пламени при горении некоторых веществ и материалов

Вещество и материал Температура пламени, °С
Ацетилен (в кислороде) 3100…3300
Ацетилен (в воздухе) 2150.. 2200
Водород  
Газонефтяной фонтан до 1100
Древесина в различных агрегатных состояниях 700…1000
Спирт 900…1200
Термит  
Торф 770..790
Нефть и нефтепродукты в резервуарах 1100…1300
Сероуглерод  
Целлулоид 1100 1300
Каучук  
Удобрения и ядохимикаты 1000…1200
Сжиженный пропан – бутан 1200…1400

 

Передача тепла в окружающую среду осуществляется одновременно тремя способами: за счет теплопроводности, конвекции и лучеиспускания.

Тепловое излучение, особенно при наружных пожарах, создает трудности для подступа личного состава к границам горения. При воздействии теплового импульса 0,25 кал/см*с в течение 3 мин на незащищенном кожном покрове человека появляются болевые ощущения.

Под температурой открытых наружных пожаров следует понимать температуру пламени, а внутренних - среднеобъемную температуру смеси продуктов сгорания с воздухом в объеме горящего помещения.

Абсолютные значения температуры наружных пожаров выше, чем внутренних. Это зависит от размеров зоны горения, характеристики горючих веществ, горючей загрузки, удельной теплоты пожара, объемно-планировочных решений объекта (зданий), условий газового обмена и других факторов.

При одновременном горении разнородных веществ и материалов среднее значение температуры пожара определяется по весовой доле загрузки этих материалов. В помещениях большой высоты скорость образования максимальной температуры намного выше, чем в низких помещениях. Пожары в подвалах, трюмах судов, кабельных тоннелях, сушильных камерах и других относительно замкнутых помещениях характеризуются более высокой температурой пожара, так как в них передача тепла наружу конвекционными потоками ограничена и происходит его аккумуляция.

Температура пожара не является величиной постоянной. Она изменяется во времени и пространстве. Изменение температуры пожара во времени и пространстве называется температурным режимом пожара.

При внутренних пожарах под температурным режимом следует понимать изменение среднеобъемной температуры во времени, при наружных - во времени и пространстве зоны теплового воздействия до безопасных ее границ.

Распределение температур на пожаре по высоте и в плане происходит неравномерно. Максимальная температура образуется в зоне горения, а минимальная - по мере удаления от нее к границам зоны теплового воздействия (граница располагается там, где температура продуктов сгорания не превышает

50-60 °С). По мере удаления от зоны горения температура снижается за счет теплообмена, происходящего в окружающей среде.

Температуру пожара можно определить измерением с помощью термопар, оптических и радиационных пирометров, расчетом по теплосодержанию дымовых газов, по характерным внешним признакам нагрева тел, конструкций, материалов (плавление, цвета побежалости и др.).

Высокая температура в зонах горения и теплового воздействия может быть причиной гибели людей и животных, вызвать нагрев горючих материалов, их воспламенение, деформацию и обрушение строительных конструкций, оказать существенное влияние на развитие и обстановку пожара, создать сложные условия для осуществления действий по тушению пожаров.

Распространению пожара в здании способствуют в первую очередь следующие места: проемы в фасаде, трещины, некачественные швы, шахты, коммуникации, пустоты в конструкциях и строительных элементах. Большая опасность таится также в возможности перехода огня на соседние дома, в результате искрения после взрыва или при огненных излучениях.

Следует сказать, что в здании, естественными преградами на пути огня могут выступать несущие и ограждающие стены, проемы для окон и дверей, люки, другие конструкции, характеризующиеся повышенными пределами огнестойкости, однако их, конечно, недостаточно для эффективного предотвращения распространения огня.

В зависимости от характеристик конструктивной и функциональной пожарной опасности распространение огня происходит:

по проемам, стыкам и коммуникациям;

по наружным стенам;

в результате прогрева;

в результате обрушений конструкций;

по сгораемым конструкциям и пустотам в конструкциях.

Деревянные конструкции обладают повышенной пожарной опасностью. Невысокая температура воспламенения древесины (280 - 300°С, а при длительном нагреве - 130 °С) приводит к загоранию конструктивных элементов даже при незначительном очаге пожара. По поверхности деревянных конструкций с эксплуатационной влажностью пламя может распространяться со скоростью до 2м/мин.

Предел распространения огня по деревянным горизонтальным конструкциям более 25см, а по вертикальным конструкциям более 40см. Скорость же переугливапия древесины незначительна (от 0,7 до 1 мм/мин в зависимости от поперечного сечения конструкции), поэтому время обрушения массивных деревянных конструкций сопоставимо в ряде случаев с пределом огнестойкости Ж/Б конструкций.

Огнестойкостью строительных элементов и конструкций называют свойство сохранять несущую способность под воздействием высоких температур, а также сопротивляться образованию сквозных отверстий, прогреву до критических температур и распространению огня. В условиях пожара кроме высоких температур на несущую способность строительных конструкций оказывают воздействие дополнительные нагрузки в виде пролитой воды. падающих предметов, мощных водяных струй и т.д., а также огневая пожарная нагрузка или общий тепловой потенциал, определяемый количеством горючих материалов на 1 м2 площади пола здания или сооружения.

Каждая строительная конструкция имеет определенный предел огнестойкости. Пределы огнестойкости строительных конструкций и элементов устанавливают на основании огневых испытаний образцов в специальных печах при стандартном температурном режиме, т.е. в интервале.556— 11930С. Минимальную температуру в печах 556°С создают через 5 мин. а максимальную 1193°С через 6 ч после начала испытания. Предел огнестойкости строительных конструкций и элементов опре­деляют промежутком времени, выраженным в часах или минутах, от начала испытания до возникновения одного из следующих признаков:

образования сквозных трещин или сквозных отверстий, через которые проникают продукты горения или пламя:

повышения температуры на не обогреваемой поверхности в среднем более чем на 1600С. или в любой точке этой поверхности более чем на 1900С по сравнению с температурой до испытания, или более 2200С независимо от температуры конструкции до испытания;

потери несущей способности конструкций и узлов (прогибе или обрушении); разрушения расчетных узлов крепления. Противопожарные преграды предназначены для предотвращения распространения пожара и продуктов горения из помещения или пожарного отсека, т.е. части здания, выделенной противопожарными стенами, с очагом пожара в другие помещения. К противопожарным преградам относятся противопожарные стены, перегородки и перекрытия.

Минимальный предел огнестойкости конструкций заполнения проемов в противопожарных преградах не должен превышать минимального предела огнестойкости противопожарной преграды.

Здания, а также части зданий, выделенные противопожарными стенами 1-го типа (пожарные отсеки), разделяются по степеням огнестойкости. В свою очередь степень огнестойкости здания зависит от степени огнестойкости его строительных конструкций. Здания и пожарные отсеки разделяются по степеням огнестойкости. Например, пределы огнестойкости строительных конструкций здания I степени огнестойкости должны быть. не менее: несущих элементов (несущие стены, рамы, колонны, балки, ригели, фермы, арки, связи, диафрагмы жесткости и т.п.) — 120 мин; наружных стен —30 мин; междуэтажных, чердачных и надподвальных перекрытий — 60 мин: бесчердачных покрытий — 30 мин; внутренних стен лестничных клеток — 120 мин; маршей и площадок лестниц — 60 мин.

Стальные конструкции, несущие балки, лестничные пролеты хотя и не могут сгореть при пожаре, но начинают деформироваться и теряют свою прочность при воздействии огня, что при достижении определенных условий приводит к обрушению здания.

Основная проблема во время пожара здания заключается в том, что металлические конструкции при нагревании деформируются. Недостаток решают двумя способами:

1) Проектные решения - огнестойкость несущих конструкций, даже если на них нанесена пожаростойкая огнезащитная краска для металлических конструкций, может быть существенно снижена, если рядом находятся горючие материалы.
Деревянные балки, прогоны обрешетки, кровля, плиты перекрытия, заполненные легковоспламеняющимися материалами – все это при условии нахождения рядом, уменьшает устойчивость металлоконструкций во время пожара.

2) Технические решения - для увеличения огнестойкости могут применять различные методы обработки. К ним относятся огнезащитные составы

для металлоконструкций, каркасная защита и многие другие решения.

Наиболее практичными являются комбинированные способы. Комбинированная огнезащита широко используется для зданий, к которым предъявляются повышенные требования к безопасности.
Прочность и огнестойкость металлической конструкции во многом зависит и от того, насколько хорошо несущие опоры защищены от атмосферных и других факторов содействующих коррозии и гниению.

Обработка металлоконструкций огнезащитным составом для наружного применения и внутренних работ, проводится одновременно с нанесением слоя антикоррозионных материалов. Со временем огнезащита может терять свои свойства. Поэтому через время необходимо проводить дополнительную обработку.

Современные материалы могут прослужить с сохранением свойств не менее 20 лет. Периодичность обязательной обработки зависит от качества используемых материалов и от квалификации бригады проводившей работы по нанесению.

 

используемый материал с сайта http://mchsnik.ru

3. Заключительная часть   Строю личный состав, выставляю оценки.

 

Пособия и оборудование, используемые на занятии: методический план.

 

Руководитель занятия _______________________ __________________

(Ф.И.О.) (дата, подпись)

«___»____________20___г.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: