Основные законы раздражения возбудимых тканей

-Закон силы: Чем больше сила раздражителя, тем больше величина ответной реакции. например, скелетная мышца. Амплитуда ее сокращений от минимальных (пороговых) величин постепенно увеличивается с увеличением силы раздражителя до субмаксимальных и максимальных значений. Это обусловлено тем, что скелетная мышца состоит из множества мышечных волокон, имеющих различную возбудимость. С увеличением силы раздражителя в реакцию вовлекается все большее и большее количество мышечных волокон и амплитуда сокращения мышцы все время увеличивается. Когда в реакцию вовлечены все мышечные волокна, составляющие данную мышцу, дальнейшее увеличение силы раздражителя не приводит к увеличению амплитуды сокращения.

-Закон "все или ничего": Подпороговые раздражители не вызывают ответной реакции ("ничего"), на пороговые раздражители возникает максимальная ответная реакция ("все"). По закону "все или ничего" сокращаются сердечная мышца и одиночное мышечное волокно. Закон "все или ничего" не абсолютен. Во-первых, на раздражители подпороговой силы не возникает видимой ответной реакции, но в ткани происходят изменения мембранного потенциала покоя в виде возникновения местного возбуждения (локального ответа). Во-вторых, сердечная мышца, растянутая кровью, при наполнении ею камер сердца, реагирует по закону "все или ничего", но амплитуда ее сокращения будет больше по сравнению с сокращением сердечной мышцы, не растянутой кровью.

-Закон силы-длительности(времени): Раздражающее действие постоянного тока зависит не только от его величины, но и от времени, в течение которого он действует. Чем больше ток, тем меньше времени он должен действовать для возникновения возбуждения. Зависимость силы-длительности имеет гиперболический характер. Из этого следует, что ток ниже некоторой минимальной величины не вызывает возбуждение, как бы длительно он не действовал, и чем короче импульсы тока, тем меньшую раздражающую способность они имеют. Причиной такой зависимости является мембранная емкость. Очень "короткие" токи просто не успевают разрядить эту емкость до критического уровня деполяризации. Минимальная величина тока, способная вызвать возбуждение при неограниченно длительном его действии, называется реобазой.

Хронаксия

• Пороговая сила любого стимула в определенных пределах находится в обратной зависимости от его длительности.

• Кривая силы – длительности, или силы – времени, изученная при исследовании различных нервов и мышц Гарвегом, Вейсом и Лапиком свидетельствует о том, что ток ниже некоторой минимальной силы или напряжения не вызывает возбуждения, как бы длительно он ни действовал.

• Минимальная сила постоянного тока, способная вызвать возбуждение (порог раздражения), названа реобазой.

Наименьшее время, в течение которого должен действовать раздражающий стимул, величиной в одну реобазу, называется полезным временем. При очень коротких стимулах кривая силы-времени становится параллельной оси ординат. Т.е. при таких кратковременных раздражениях возбуждение не возникает, как бы ни была велика сила раздражителя.

• Хронаксия – это время, в течение которого должен действовать ток удвоенной реобазы, чтобы вызвать

возбуждение

-Закон раздражения Дюбуа-Реймона (аккомодации) крутизны нарастания: Раздражающее действие постоянного тока зависит не только от абсолютной величины силы тока или его плотности, но и от скорости нарастания тока во времени.

• При действии медленно нарастающегораздражителя возбуждение не возникает, так как происходит приспосабливание возбудимой ткани к действию этого раздражителя, что получило название аккомодации. Аккомодация обусловлена тем, что при действии медленно нарастающего раздражителя в мембране возбудимой ткани происходит повышение критического уровня деполяризации

Аккомодация возбудимых тканей

• Раздражители характеризуются не только силой и длительностью действия, но и скоростью роста во времени силы воздействия на объект, т. е. градиентом.

• Уменьшение крутизны нарастания силы раздражителя ведет к повышению порога возбуждения, вследствие чего, ответ биосистемы при некоторой минимальной крутизне вообще исчезает. Это явление названо аккомодацией.

• Зависимость между крутизной нарастания силы раздражения и величиной возбуждения определена в

законе градиента: реакция живой системы зависит от градиента раздражения: чем выше крутизна

нарастания раздражителя во времени, тем больше до известных пределов величина функционального ответа

-Закон полярного действия постоянного тока: При замыкании тока возбуждение возникает под катодом, а

при размыкании - под анодом. Прохождение постоянного электрического тока через нервное или мышечное волокно вызывает изменение мембранного потенциала покоя.

• Так, в области приложения к возбудимой ткани катода положительный потенциал на наружной стороне мембраны уменьшается, возникает деполяризация, которая быстро достигает критического уровня и вызывает возбуждение.

• В области же приложения анода положительный потенциал на наружной стороне мембраны возрастает, происходит гиперполяризация мембраны и возбуждение не возникает. Но при этом под анодом критический уровень деполяризации смещается к уровню потенциала покоя. Поэтому при размыкании цепи тока гиперполяризация на мембране исчезает и потенциал покоя, возвращаясь к исходной величине, достигает смещенного критического уровнями возникает возбуждение.

Особенности действия постоянного тока на ткани

• При раздражении нерва или мышцы постоянным током возбуждение возникает в момент замыкания постоянного тока только под катодом, а в момент размыкания – только под анодом. Открыт Пфлюгером в 1859 г.

• Было установлено, что если на нерв воздействовать слабым постоянным током, то его возбудимость под катодом повышается, а под анодом снижается.

• Впоследствии Б.Ф. Вериго (1883) показал, что как повышение возбудимости под катодом, так и снижение под анодом характерно только для первоначального действия постоянного тока.

Физиологический электротон – изменения функциональных свойств мембраны при прохождении через нее постоянного электрического тока.

• Физиологический электротон проявляется по-разному (под анодом (+) заряд тока и катодом (-) заряд).

Различают

• А) катэлектротон – повышение функциональных свойств мембраны под катодом;

• Б) анэлектротон – понижение функциональных свойств мембраны под анодом (в медицине используется для электросна).

• При длительном действии под катодом развивается катодическая депрессия, и возбудимость снижается, становясь меньше исходной. А под анодом может возникнуть явление анодической экзальтации с повышением возбудимости.

• Изменение возбудимости клеток или ткани под действием постоянного электрического тока называется физиологическим электротоном. Соответственно различают катэлектрон и анэлектрон (изменение возбудимости под катодом и анодом).

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: