double arrow

Конструктивные системы высотных зданий


В современном высотном строительстве применяют различные конструктивные системы и схемы с разнообразными вариантами компоновок. Вместе с тем все конструктивные системы можно разделить на три категории (рис. 1): каркасные, стеновые и смешанные (каркасностеновые). В свою очередь каркасные системы подразделяются на рамно­каркасные, каркасные с диафрагмами жесткости, каркасноствольные. Среди стеновых систем следует выделить схемы с перекрестными стенами и коробчатые (оболочковые). Смешанные системы сочетают в себе отдельные признаки двух других систем, к ним относят каркасноствольные и коробчато­ствольные.

Анализ несущих систем высотных зданий, построенных по всему миру, показывает, что их конструктивное и компоновочное решение зависит главным образом от высоты объекта. Однако существенное влияние на выбор конструктивной схемы оказывают и такие факторы, как сейсмическая активность района строительства, инженерно­геологические условия, атмосферные и в первую очередь ветровые воздействия, архитектурнопланировочные требования.

Высотные здания можно разделить на диапазоны по высоте, для каждого из которых характерны свои конструктивные решения. При этом следует заметить, что границы диапазонов в определенной степени условны в силу перечисленных выше обстоятельств.

Здания высотой до 200–250 м возводят преимущественно с несущим каркасом (рамный каркас, каркас с диафрагмами жесткости). При строительстве жилых домов и гостиниц применяют и перекрестно­стеновую систему, которая благодаря высокой жесткости наиболее эффективна в зданиях высотой до 150 м. Эти конструктивные системы имеют компоновочные схемы, наилучшим образом удовлетворяющие объемно­планировочным решениям и функциональному назначению объектов строительства. В связи с этим необходимо отметить, что независимо от высоты здания при разработке его объемно­планировочного решения максимально стараются придерживаться пропорций, обеспечивающих требуемую жесткость строения и ограничивающих колебания верхней части при знакопеременных горизонтальных нагрузках. Обычно отношение меньшего размера в плане к высоте здания составляет 1:7 – 1:8. При соотношениях больше указанных неоправданно увеличивается площадь застройки, а при уменьшении – заметно возрастает деформативность несущего остова, что негативно сказывается как на технико­экономических показателях, так и на пребывании людей на верхних этажах.




Увеличение высоты зданий сопровождается существенным ростом горизонтальных нагрузок, действующих на них в процессе строительства и эксплуатации. Как уже было отмечено, при некоторых условиях напряжения, возникающие в элементах несущего остова здания, определяются в большей степени горизонтальными усилиями. Превалирующее влияние горизонтальных нагрузок приводит к неравномерному распределению вертикальных усилий и деформаций в вертикальных несущих конструктивных элементах остова здания, его закручиванию, сдвиговым деформациям. Для повышения сопротивления внешним воздействиям несущей системы зданий высотой более 250 м применяют преимущественно ствольные конструктивные системы: “труба в трубе” и “труба в ферме”. Их компоновочная схема включает центральный ствол, воспринимающий основную долю всех нагрузок, и расположенные по периметру здания несущие элементы в виде отдельных стоек (колонн), решетчатых систем (ферм, составных стержней и др.), пилонов, которые также могут быть объединены в единую конструкцию. Жесткость ствольной системы, ее устойчивость и способность к гашению вынужденных колебаний обеспечиваются заделкой центрального ствола в фундамент.



В случаях, когда жесткости стеновой, каркасной или ствольной системы недостаточно, прибегают к комбинированным решениям, сочетающим в себе признаки разных конструктивных решений. В частности, для повышения сопротивления несущего остова здания возрастающим с высотой над уровнем земли ветровым нагрузкам применяют комбинацию ствольной и стеновой систем. В этом случае горизонтальные нагрузки воспринимаются не только внешней оболочкой и центральным стволом, но и внутренними несущими стенами. Комбинированная конструктивная система обладает большей конструктивной гибкостью в части возможности распределения доли воспринимаемых усилий за счет варьирования жесткости несущих элементов остова.

Следует заметить, что повышения сопротивляемости здания ветровым нагрузкам можно достигнуть не только за счет применения соответствующих конструктивных систем, но и путем придания определенной формы в плане. Многочисленные зарубежные исследования, выполненные продуванием моделей в аэродинамических трубах и компьютерной симуляцией с помощью программного обеспечения, показали, что оптимальной формой плана высотного здания является круг или фигура, близкая по форме к кругу. Эллиптическая и квадратная формы хотя и уступают круглой, но также обеспечивают достаточную сопротивляемость здания горизонтальным нагрузкам. В качестве примеров можно привести здания Marina City в г. Чикаго (США), Petronas Towers в г. КуалаЛумпур (Малайзия), Taipei101 в г. Тайпей (Тайвань). Другие высотные здания близкой этажности имеют аналогичные очертания в плане.

Говоря о предпочтительных формах планов высотных зданий, необходимо отметить, что при прочих равных условиях наилучшими показателями обладают сечения минимум с двумя осями симметрии. Такие здания менее других чувствительны к изменению направления действия горизонтальных нагрузок, а количество типоразмеров несущих конструкций сокращается до минимума. Практика свидетельствует о том, что сооружения сложной формы целесообразно проектировать составными из нескольких блоков, имеющих более простые по форме сечения.

Высотное строительство часто осуществляется в сейсмически активных районах. Это порой приводит к противоречивым результатам влияния жесткости каркаса на поведение здания при ветровых и сейсмических нагрузках. Если для улучшения сопротивления ветровому напору и уменьшения амплитуды и частоты колебаний верха здания прибегают к увеличению жесткости несущего остова, то при сейсмических нагрузках такие здания не способны поглотить энергию толчков земной коры, что вызывает значительные перемещения и ускорения на верхних этажах. С уменьшением поперечной жесткости несущей системы наблюдается обратная картина – при более гибком скелете заметно ухудшаются комфортные условия на верхних этажах, испытывающих значительные колебания.

Для устранения указанных противоречий в особо высоких зданиях (до 300 м и более) на верхних этажах устраивают пассивные маятниковые демпферы. В частности, такой демпфер установлен в башне Taipei101. Он имеет вес около 800 т, подвешен с помощью тросов на 92м этаже и предназначен для гашения инерционных колебаний. В обычных условиях эксплуатации демпфер обеспечивает отклонение верха здания в пределах до 10 см, а при воздействиях катастрофического характера (тайфуны, землетрясения и т.п.) сам раскачивается с амплитудой до 150 см, гарантируя колебания здания в безопасных пределах.

Повышение изгибной жесткости несущего остова высотных зданий со ствольными конструктивными системами и их сопротивляемости действию динамических горизонтальных воздействий достигают введением в каркас аутригерных структур (рис. 2), выполняющих функцию элементов, несущих на себе часть нагрузки от перекрытий. Как правило, это достаточно жесткие плоские или пространственные конструкции, расположенные по высоте здания с определенным шагом и соединенные между собой вертикальными стержневыми элементами. Включение аутригерных структур принципиально изменяет характер работы каркаса и позволяет регулировать его реакцию на внешние воздействия. Аутригеры высотных зданий, в конструктивном отношении представляющие собой раскосные или безраскосные фермы (последние известны под названием “балка Веренделя”), обычно располагают в уровнях технических этажей, разбивающих здания на отдельные функциональные и противопожарные отсеки.

Говоря о проектировании высотных зданий, рассчитываемых на воздействие сейсмических нагрузок, следует иметь в виду, что землетрясения силой до 4 баллов на уровне поверхности земли приводят к возникновению на верхних этажах эффектов, соответствующих воздействиям силой 6, 7 и более баллов. Об этом свидетельствуют результаты расшифровки сейсмо и акселерограмм, записанных в Москве в 1977 и 1986 гг. Согласно В.В. Севостьянову и его коллегам [3], при проектировании высотных зданий и их комплексов высотой 100 м и более в Москве следует обязательно учитывать сейсмические воздействия. Как показывает анализ землетрясений, зафиксированных в Московском регионе за весь период инструментальных наблюдений, подвижки земной коры или ощутимые отголоски колебаний в других регионах могут происходить с временным интервалом в 50–100 лет. С учетом расчетного срока службы высотного здания, который составляет не менее 100 лет, каждый объект минимум один раз может подвергнуться воздействию сейсмических нагрузок достаточно высокой интенсивности.

Сопротивление высотного здания совокупности вертикальных и горизонтальных нагрузок зависит не только от очертания в плане, но и от формы вертикального сечения и регулярности структуры несущей системы. В этом отношении к оптимальным очертаниям приближаются трапеция с бульшим нижним основанием и прямоугольник (рис. 3, а). Такие профили обладают достаточной поперечной жесткостью, особенно в сочетании с регулярной структурой несущей системы (рис. 3, б). При сооружении высотного комплекса, состоящего из нескольких объемов, последние следует соединять шарнирно (рис. 3, в), чтобы в случае воздействий чрезвычайного характера, в том числе динамических нагрузок, не передавать на соседние строения дополнительные усилия.

Заказать ✍️ написание учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Сейчас читают про: