Схема передачи сигнала в клетку. Первичные и вторичные мессенджеры

клетка превращает один тип сигнала или стимула в другой.

1.взаимодействие внешнего агента (стимула) с клеточным рецептором,

2.активация эффекторной молекулы, находящейся в мембране и отвечающей за генерацию вторичныхмессенджеров,

3. образование вторичныхмессенджеров,

4.активация мессенджерами белков-мишеней, вызывающих генерацию следующих мессенджеров,

5.исчезновение мессенджеров.

Вторичные мессенджеры - это внутриклеточные вещества, концентрация которых строго контролируется гормонами-нейромедиаторами и другими внеклеточными сигналами - первичными мессенджерами (firstmessengers).

 

В качестве агониста рецептора клетка может использовать специально синтезированные соединения пептидной природы или использовать свои внутриклеточные метаболиты, которые отсутствуют в экстраклеточной среде. Кофермент АТР и глутамат, действующие экстраклеточно, являются мощными нейротрансмиттерами. Природные экстраклеточные лиганды, которые взаимодействуют с рецепторами и активируют их, называют первичными мессенджерами. Они могут быть подразделены на гормоны, нейротрансмиттеры, цитокины, лимфокины, факторы роста, липофильные молекулы имеющие рецепторы, хемоаттрактанты и.т.д. Каждый из этих терминов представляет класс агентов, действующих достаточно специфично. Тем не менее, существуют примеры многофункциональности первичных мессенджеров: АТР и глутамат являются нейротрансмиттерами, когда они секретируются в синапсах. Гормоны пищеварительного тракта, такие как гастрин, холецитокинин и секретин в центральной нервной системе осуществляют многообразные функции нейромодуляторов, влияя на высвобождение других нейротрансмиттеров. Соматостатин, идентифицированный первоначально как агент гипоталамуса, подавляющий секрецию гормона роста, также функционирует в центральной нервной системе как нейротрансмиттер и нейромодулятор. Более того, он является паракринным агентом для клеток поджелудочной железы и гормоном для печени. Фактор роста тромбоцитов TGFb действует также как хемоатрактант и как ингибитор роста. Тромбин является фактором роста, но также вовлекается в свертывание крови как активатор функции тромбоцитов.

Механизмы, преобразующие внешние сигналы во внутриклеточные, находятся в плазматической мембране клетки. Восприятие клетками внешних сигналов в основном происходит благодаря взаимодействию внешних факторов с клеточными рецепторами, расположенными на наружной мембране клеток. Рецепторы распознают и связывают внешний сигнал (сигнальный агент — лиганд) и приводят в дейcтвие внутриклеточные пути передачи информации, ведущие к запуску и регуляции различных внутриклеточных процессов.

 

Внешний сигнальный агент, называемый первичным посредником, как правило, не проникает внутрь клетки, а специфически взаимодействует с рецепторами наружной клеточной мембраны. В качестве первичных посредников выступают различные химические соединения (гормоны, нейромедиаторы, газотрансмиттеры и др.) или физические факторы (квант света). Однако существуют гидрофобные гормоны (стероидные и тиреоидные), которые способны проникать внутрь клетки, преодолевая при этом липидный бислой, и взаимодействовать там с растворимыми рецепторными белками. Таким же механизмом действия обладают малые молекулы — NO и CO.

 

Если внешняя сигнальная молекула воздействует на рецепторы клеточной мембраны и активирует их, то последние передают полученную информацию на систему белковых компонентов мембраны, называемую каскадом передачи сигнала. Мембранные белки каскада передачи сигнала подразделяют на:

белки-преобразователи, связанные с рецепторами

ферменты-усилители, связанные с белками-преобразователями (активируют вторичные внутриклеточные посредники, переносящие информацию внутрь клетки).

 

Так действуют рецепторы, сопряженные с G-белками. Другие рецепторы (ионные каналы, рецепторы с протеинкиназной активностью) сами служат умножителями.

 

Клеточный цикл его периоды

Клеточный цикл — это период существования клетки от момента её образования путем деления материнской клетки до собственного деления.

Таким образом клеточный цикл составляют два периода:

1) период клеточного роста, называемый " интерфаза ", и

2) период клеточного деления, называемый " фаза М " В свою очередь, в каждом периоде выделяют несколько фаз

Обычно интерфаза занимает не меньше 90% времени всего клеточного цикла. Например, у быстро делящихся клеток высших эукариот последовательные деления происходят один раз в 16-24 часа, и каждая фаза М длится 1-2 часа. Большая часть компонентов клетки синтезируется на протяжении всей интерфазы, это затрудняет выделение в ней отдельных стадий

В интерфазе выделяют фазу G1, фазу S и фазу G2. Период интерфазы, когда происходит репликация ДНК клеточного ядра, был назван " фаза S " Период между фазой М и началом фазы S обозначен как фаза G1, а период между концом фазы S и последующей фазой М - как фаза G2.

Период клеточного деления (фаза М) включает две стадии: митоз (деление клеточного ядра) и цитокинез (деление цитоплазмы). В свою очередь, митоз делится на пять стадий Описание клеточного деления базируется на данных световой микроскопии в сочетании с микрокиносъемкой и на результатах световой и электронной микроскопии фиксированных и окрашенных клеток.

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: