Основные этапы развития генетики

История развити науки генетики.

План занятия:

1. основные потятия генетики.

2. этапы развити генетики

3. вклад российских ученых в развитие генетики.

 

План работы:

1. Прочитать текст.

2. Прочитать стр учебнка 155-161.

3. Выписать в тетрадь основные понятия.

4. По учебнику выписать основные этапы в развитии генетики.

5. Работу сдать можно сегодня, но не позднее 12-00 следующего дня.

 

Основные потятия генетики.

 

Генетика изучает закономерности наследственности и изменчивости, которые относятся к основным свойствам живых организмов.

 

Наследственностью называется свойство организмов повторять в ряду поколений сходные признаки. Функциональной единицей наследственности является ген, который реализуется в признак.

 

Изменчивость – это способность организмов приобретать новые признаки – различия в пределах вида.

 

Наследование - это способ передачи наследственной информации, который может измениться в зависимости от форм размножения.

 

Основные закономерности наследования были открыты чешским ботаником Грегором Менделем в 1865 году, хотя в то время они не получили признания. Лишь в 1900 году те же закономерности вновь установили независимо друг от друга Гуго де Фриз в Голландии, Корренс в Германии и Чермак в Австрии.

 

Изучая закономерности наследования, Г. Мендель использовал гибридологический метод, суть которого состоит в следующем:

 

- скрещивая организмы между собой, он выделял и анализировал наследование по отдельным контрастным или альтернативным признакам (цвет желтый или зеленый),

 

- был проведен точный количественный учет наследования каждого альтернативного признака в ряду последующих поколений.

 

- было прослежено не только первое поколение, но и последующие по этому признаку.

 

Скрещивание, в котором родительские особи анализируется по одной альтернативной паре признаков, называется моногибридным, по двум - дигибридным, по трем и более - полигибридным.

 

Основные понятия генетики.

 

В настоящее время установлено, что гены, отвечающие за признаки, находятся в хромосомах. Хромосомы в соматических клетках организма парные или гомологичные. Поэтому за развитие одного признака отвечают два гена. Гены,определяющие развитие одного и того же признака и расположенные в одних и тех же локусах гомологичных хромосом, называют аллельными.

Если в обеих гомологичных хромосомах, в одних и тех же локусах, находятся идентичные аллели гена, то такой организм называется гомозиготным. В потомстве таких организмов не происходит расщепления признаков.

 

Организм, у которого гомологичные хромосомы несут различные аллели того или иного гена, называется гетерозиготным. В потомстве такие организмы обнаруживают расщепление признаков.

 

Явление преобладания признака получило название доминирования, а преобладающий признак называется доминантным. Признак, который подавляется, называется рецессивным.

 

Основные этапы развития генетики

 

Истоки генетики, как и всякой науки, следует искать в практике. Генетика возникла в связи с разведением домашних животных и возделыванием растений, а также с развитием медицины. С тех пор как человек стал применять скрещивание животных и растений, он столкнулся с тем фактом, что свойства и признаки потомств зависят от свойств избранных для скрещивания родительских особей. Отбирая и скрещивая лучших потомков, человек из поколения в поколение создавал родственные группы - линии, а затем породы и сорта с характерными для них наследственными свойствами.

 

Хотя эти наблюдения и сопоставления еще не могли стать базой для формирования науки, однако бурное развитие животноводства и племенного дела, а также растениеводства и семеноводства во второй половине XIX века породило повышенный интерес к анализу явления наследственности.

 

Развитию науки о наследственности и изменчивости особенно сильно способствовало учение Ч. Дарвина о происхождении видов, которое внесло в биологию исторический метод исследования эволюции организмов. Сам Дарвин приложил немало усилий для изучения наследственности и изменчивости. Он собрал огромное количество фактов, сделал на их основе целый ряд правильных выводов, однако ему не удалось установить закономерности наследственности.

 

Его современники, так называемые гибридизаторы, скрещивавшие различные формы и искавшие степень сходства и различия между родителями и потомками, также не смогли установить общие закономерности наследования.

 

Еще одним условием, способствовавшим становлением генетики как науки, явились достижения в изучении строения и поведения соматических и половых клеток. Еще в 70-х годах прошлого столетия рядом исследователей-цитологов (Чистяковом в 1972 г., Страсбургером в 1875 г.) было открыто непрямое деление соматической клетки, названное кариокинезом (Шлейхером в 1878 г.) или митозом (Флеммингом в 1882 г.). Постоянные элементы ядра клетки в 1888 г. по предложению Вальдейра получили название "хромосомы". В те же годы Флемминг разбил весь цикл деления клетки на четыре главные фазы: профаза, метафаза, анафаза и телофаза.

 

Одновременно с изучением митоза соматической клетки шло исследование развития половых клеток и механизма оплодотворения у животных и растений. О. Гертвиг в 1876 г. впервые у иглокожих устанавливает слияние ядра сперматозоида с ядром яйцеклетки. Н.Н. Горожанкин в 1880 г. и Е. Страсбургер в 1884 г. устанавливает то же самое для растений: первый - для голосеменных, второй - для покрытосеменных.

 

В те же Ван-Бенеденом (1883 г.) и другими выясняется кардинальный факт, что в процессе развития половые клетки, в отличие от соматических, претерпевают редукцию числа хромосом ровно вдвое, а при оплодотворении - слиянии женского и мужского ядра - восстанавливается нормальное число хромосом, постоянное для каждого вида. Тем самым было показано, что для каждого вида характерно определенное число хромосом.

 

Итак, перечисленные условия способствовали возникновению генетики как отдельной биологической дисциплины - дисциплины с собственными предметом и методами исследования.

 

Официальным рождением генетики принято считать весну 1900 г., когда три ботаника, независимо друг от друга, в трех разных странах, на разных объектах, пришли к открытию некоторых важнейших закономерностей наследования признаков в потомстве гибридов. Г. де Фриз (Голландия) на основании работы с энотерой, маком, дурманом и другими растениями сообщил "о законе расщепления гибридов"; К. Корренс (Германия) установил закономерности расщепления на кукурузе и опубликовал статью "Закон Грегора Менделя о поведении потомства у расовых гибридов"; в том же году К. Чермак (Австрия) выступил в печати со статьей (Об искусственном скрещивании у Pisum Sativum).

 

Наука почти не знает неожиданных открытий. Самые блестящие открытия, создающие этапы в ее развитии, почти всегда имеют своих предшественников. Так случилось и с открытием законов наследственности. Оказалось, что три ботаника, открывших закономерность расщепления в потомстве внутривидовых гибридов, всего-навсего "переоткрыли" закономерности наследования, открытые еще в 1865 г. Грегором Менделем и изложенные им в статье "Опыты над растительными гибридами", опубликованной в "трудах" Общества естествоиспытателей в Брюнне (Чехословакия).

 

 

Г. Мендель на растениях гороха разрабатывал методы генетического анализа наследования отдельных признаков организма и установил два принципиально важных явления:

 

1. признаки определяются отдельными наследственными факторами, которые передаются через половые клетки;

 

2. отдельные признаки организмов при скрещивании не исчезают, а сохраняются в потомстве в том же виде, в каком они были у родительских организмов.

 

Для теории эволюции эти принципы имели кардинальное значение. Они раскрыли один из важнейших источников изменчивости, а именно механизм сохранения приспособленности признаков вида в ряду поколений. Если бы приспособительные признаки организмов, возникшие под контролем отбора, поглощались, исчезали при скрещивании, то прогресс вида был бы невозможен.

 

Все последующее развитие генетики было связано с изучением и расширением этих принципов и приложением их к теории эволюции и селекции.

 

Из установленных принципиальных положений Менделя логически вытекает целый ряд проблем, которые шаг за шагом получают свое разрешение по мере развития генетики. В 1901 г. де Фриз формулирует теорию мутаций, в которой утверждается, что наследственные свойства и признаки организмов изменяются скачкообразно - мутационно.

 

В 1903 г. датский физиолог растений В. Иоганнсен публикует работу "О наследовании в популяциях и чистых линиях", в которой экспериментально устанавливается, что относящиеся к одному сорту внешне сходные растения являются наследственно различными - они составляют популяцию. Популяция состоит из наследственно различных особей или родственных групп - линий. В этом же исследовании наиболее четко устанавливается, существование двух типов измен6чивости организмов: наследственной, определяемой генами, и ненаследственной, определяемой случайным сочетанием факторов, действующих на проявление признаков.

 

На следующем этапе развития генетики было доказано, что наследственные формы связаны с хромосомами. Первым фактом, раскрывающим роль хромосом в наследственности, было доказательство роли хромосом в определении пола у животных и открытие механизма расщепления по полу 1:1.

 

 

С 1911 г. Т. Морган с сотрудниками в Колумбийском университете США начинает публиковать серию работ, в которой формулирует хромосомную теорию наследственности. Экспериментально доказывая, что основными носителями генов являются хромосомы, и что гены располагаются в хромосомах линейно.

 

В 1922 г. Н.И. Вавилов формулирует закон гомологических рядов в наследственной изменчивости, согласно которому родственные по происхождению виды растений и животных имеют сходные ряды наследственной изменчивости.

 

Применяя этот закон, Н.И. Вавилов установил центры происхождения культурных растений, в которых сосредоточено наибольшее разнообразие наследственных форм.

 

В 1925 г. у нас в стране Г.А. Надсон и Г.С. Филиппов на грибах, а в 1927 г. Г. Мёллер в США на плодовой мушке дрозофиле получили доказательство влияния рентгеновых лучей на возникновение наследственных изменений. При этом было показано, что скорость возникновения мутаций увеличивается более чем в 100 раз. Этими исследованиями была доказана изменчивость генов под влиянием факторов внешней среды. Доказательство влияния ионизирующих излучений на возникновение мутаций привело к созданию нового раздела генетики - радиационной генетики, значение которой еще более выросло с открытием атомной энергии.

 

В 1934 г. Т. Пайнтер на гигантских хромосомах слюнных желез двукрылых доказал, что прерывность морфологического строения хромосом, выражающаяся в виде различных дисков, соответствует расположению генов в хромосомах, установленному ранее чисто генетическими методами. Этим открытием было положено начало изучению структуры и функционирования гена в клетке.

 

В период с 40-х годов и по настоящие время сделан ряд открытия (в основном на микроорганизмах) совершенно новых генетических явлений, раскрывших возможности анализа структуры гена на молекулярном уровне. В последние годы с введением в генетику новых методов исследования, заимствованных из микробиологии мы подошли к разгадке того, каким образом гены контролируют последовательность расположения аминокислот в белковой молекуле.

 

Прежде всего, следует сказать о том, что теперь полностью доказано, что носители наследственности являются хромосомы, которые состоят из пучка молекул ДНК.

 

Были проведены довольно простые опыты: из убитых бактерий одного штамма, обладающего особым внешним признаком, выделили чистую ДНК и перенесли в живые бактерии другого штамма, после чего размножающиеся бактерии последнего приобрели признак первого штамма. Подобные многочисленные опыты показывают, что носителем наследственности является именно ДНК.

 

 

В 1953 г. Ф. Крик (Англия) и Дж. Уотстон (США) расшифровали строение молекулы ДНК. Они установили, что каждая молекула ДНК слагается из двух полидезоксирибонуклеиновых цепочек, спирально закрученных вокруг общей оси.

 

В настоящее время найдены подходы к решению вопроса об организации наследственного кода и экспериментальной его расшифровке. Генетика совместно с биохимией и биофизикой вплотную подошла к выяснению процесса синтеза белка в клетке и искусственному синтезу белковой молекулы. Этим начинается совершенно новый этап развития не только генетики, но и всей биологии в целом.

 

Развитие генетики до наших дней - это непрерывно расширяющийся фонт исследований функциональной, морфологической и биохимической дискретности хромосом. В этой области сделано уже много сделано уже очень много, и с каждым днем передний край науки приближается к цели - разгадки природы гена. К настоящему времени установлен целый ряд явлений, характеризующих природу гена. Во-первых, ген в хромосоме обладает свойством самовоспроизводится (авторепродукции); во-вторых, он способен мутационно изменяться; в-третьих, он связан с определенной химической структуры дезоксирибонуклеиновой кислоты - ДНК; в-четвертых, он контролирует синтез аминокислот и их последовательностей в белковой молекулы. В связи с последними исследованиями формируется новое представление о гене как функциональной системе, а действие гена на определение признаков рассматривается в целостной системе генов - генотипе.

 

Генетика в России

 

У нашей страны интересная история. Россия — страна, которую постоянно лихорадит. И дело даже не в войнах, когда приходилось защищать границы страны, дело в том, что политические интриги в мирные времена влияли не только на благоустройство людей, но и на науку.

История генетики в России — пример довольно интересный.

 XX в — время зарождения генетики в России. Естественно, наук генетику «привезли» из Европы. В то время в России уже было много выдающихся ученых-биологов, но генетики как науки еще не было.

 

1880-1940-е гг — в Петербурге открывается первая школа генетики. Основателями школы были Юрий Александрович Филипченко и Николай Иванович Вавилов.

 

 

 

 

 

 

 

 

 

 Эти люди были не просто выдающимися учеными, признанными во всем мире. Это были лидеры, которые в короткий срок собрали вокруг себя самые лучшие умы того времени.

 В 20-е — 40-е гг команда ученых, которой руководил А.С.Серебровский, проводила работы по изучению строения гена. Была определена структура, влияние генов друг на друга и т.д. Работы Вавилова и других ученых были всемирно известны и по достоинству оценены.

Я не описываю здесь тех многих ученых, которые трудились в то время. Все они были гениальны, все они внесли огромный вклад в науку.

Это был «серебряный век» генетики в России.

Это направление науки получило солидную поддержку государством. Открывались музеи, строились институты, быть студентом или ученым — генетиком было почти что престижно (хотя тогда такого слова не было:)). Правительство очень благосклонно относилось к работами Вавилова, ведь его труды о культурных растениях можно было использовать в сельском хозяйстве.

Но настал страшный для генетики в России 1948 г

В истории это называется «Делом врачей отравителей» — уголовное дело против группы видных советских врачей, обвиняемых в заговоре и убийстве ряда советских лидеров. «Дело врачей» вызвало преследования родственников и сослуживцев арестованных, а также волну антисемитских настроений по всей стране.

Был ли заговор, было ли отравление, при чем тут ученые-генетики… сейчас уже есть очень много теорий на эту тему. Рассматривают этот вопрос с политической, национальной точки зрения, говорят о межпартийных заговорах и т.д. Нам, простым людям, в этой истории уже не разобраться.

Многие, очень многие ученые были репрессированы.

Результатом всего этого стало то, что все работы по генетике человека и медицинской генетике были прерваны.

… Были сразу уволены десятки и сотни ведущих профессоров и преподавателей. Из библиотек изымались и уничтожались по спискам биологические книги, основанные на менделевской генетике. Пламя погрома перекинулось на цитологию, эмбриологию, физиологию и достигло даже таких отдаленных областей, как квантовая химия.

Возобновление работ по генетике началось только уже после смерти Сталина. Этот период в учебниках истории называется «оттепель». Началось возрождение генетики как науки. Появилось много замечательных ученых, была создана Школа Цитогенетики, возобновились исследования в области медицинской генетики и много-много другого…

Но Россия — загадочная страна. Она живет от одного потрясения до другого… Развал СССР, лихие 90-е гг. Кто тогда думал о науке? Просто не до нее было…

В Европе уже давным давно делают генетические тесты ребенку сразу после рождения! Определяют предрасположенность к различным заболеваниям, переносимость различных групп лекарств, примерную продолжительность жизни и т.д. Есть постоянно пополняемая энциклопедия вирусов, где ДНК и РНК основных видов имеют специальное обозначение и список основных из них есть в каждой больнице.

 

Вот список самых крупных институтов по генетическим исследованиям в России:

Институт генетики Вавилова

Институт общей генетики им. Н.И.Вавилова РАН – старейшее генетическое учреждение в системе Российской Академии Наук

Федеральное государственное бюджетное учреждение науки

генетика в России

Институт молекулярной генетики

Российской академии наук (сокращенное название: ИМГ РАН)

Институт биохимии и генетики Уфимского научного центра РАН

Конечно, это не все институты. Здесь они указаны для просто для примера.

 

Генетика в России имеет печальную историю. Но это прошлое. Его не надо ругать, его не надо идеализировать, на нем нужно учиться. Мы уже не можем на него повлиять.

 

Желаю успехов.

 

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: