Условия для жизни в космосе

Проблема жизни во вселенной

Проблема происхождения жизни во Вселенной тесно связана с проблемой возникновения жизни на Земле. Эта проблема является одной из наиболее важных, узловых проблем для формирования планетарно-космического взгляда на эволюцию в целом. Рассмотрение этой проблемы следует начинать с анализа основных концепций возникновения жизни на Земле, к которым, в первую очередь, относятся следующие.

1. Креационистская концепция (креационизм), согласно которой жизнь была создана сверхъестественным существом (существами) в определенный момент (промежуток) времени.

2. Концепция панспермии, согласно которой возможен перенос жизни в космическом пространстве с одной планеты на другую («заражение» Земли жизнью из космоса).

3. Концепция самопроизвольного зарождения - возникновение жизни из неживого вещества (неоднократное).

Кроме этих концепций, достаточно широкое распространение имеют: теория стационарного состояния и концепция возникновения жизни в результате биохимической эволюции, которая хорошо коррелирует с концепцией самозарождения жизни. Подробнее рассмотрим основные из этих концепций.

Креационизм мыслится как Божье Творение. Его можно рассматривать и как результат деятельности высокоразвитой цивилизации, создающей различные формы жизни и наблюдающей за их развитием.

Концепция панспермии предполагает внезапное появление жизни на планете, но сам механизм образования жизни, якобы имевший место где-то в другой звездной системе, эта концепция не рассматривает. Жизнь вообще очень «цепкая», и даже в земных условиях способность ее к распространению поражает. В качестве примера можно привести заселение живыми существами вулканических островов, возникающих довольно часто посреди океана. Спустя непродолжительное время на совершенно безжизненных островах появляется жизнь.

Однако более логичной является концепция «самозарождения жизни». Ее развивали Демокрит, Аристотель, Св. Августин, Ф. Бэкон, Декарт, Бюффон, Ламарк и другие выдающиеся исследователи, которые принадлежали к различным философским школам и направлениям общественной мысли. В XX в. интерес к этой концепции вспыхнул вновь, подпитанный последними достижениями биологии и химии. Важную роль при этом сыграл диалектический материализм, который способствовал возрождению материалистического подхода к изучению вопроса о происхождении жизни. Основные идеи данной концепции могут быть проиллюстрированы работами российского ученого А. И. Опарина и английского исследователя Дж.Б. Холдейна.

А.И. Опарин так выразил свои основные идеи: «Чем ближе, чем детальнее мы познаем сущность процессов, совершающихся в живой клетке, тем больше крепнет в нас уверенность в том, что в них нет ничего особенного, таинственного, не поддающегося объяснению с точки зрения общих для всего сущего законов физики и химии... Жизнь характеризуется не какими-либо определенными свойствами, а особенной, специфической комбинацией этих свойств».

Опарин считал, что гетеротрофные организмы, питавшиеся органической пищей, предшествовали по времени автотрофным организмам, питавшимся неорганической пищей. Многие ученые предполагали, что последовательность возникновения этих организмов была противоположной, исходя из того, что двуокись углерода являлась основным строительным материалом, используемым живыми организмами. Опарин считал этот тезис сомнительным. Он основывался на том, что все организмы сначала были гетеротрофными, а когда запасы органической пищи сократились, произошло разделение организмов по способу питания.

Проблема возникновения жизни не может быть решена без решения вопроса о вирусах. Последние рассматриваются многими исследователями как простейшие «живые существа», хотя у них и нет основных функций живого. Точнее, вирусы - это продукты жизни, а не жизнь на молекулярном уровне. Вирус не обладает способностью к осуществлению процессов метаболизма, поскольку не имеет ни одного из физиологических механизмов, необходимых для осуществления этих процессов. Он использует механизмы, которыми обладает «хозяин», вводя в их действие информацию, необходимую для достижения своих целей. Вирусы оказываются неспособными к самовоспроизводству до тех пор, пока они не попадают внутрь уже существующего жизненного процесса. Основной вопрос, который ставил здесь Опарин, может быть сформулирован так: «Находятся ли вирусы на магистральном пути развития, ведущего к появлению жизни, или они лежат на ответвлении от этого пути?» И его ответ сводился к тому, что вирусы - это ответвление.

Условия для жизни в космосе

В космосе мы встречаем широкий спектр физических условий: температура вещества меняется от 3—5 К до 107—108 К, а плотность — от 10-22 до 1018 кг/см3. Среди столь большого разнообразия нередко удаётся обнаружить места (например, межзвёздные облака), где один из физических параметров с точки зрения земной биологии благоприятствует развитию жизни. Но лишь на планетах могут совпасть все параметры, необходимые для жизни.

ПЛАНЕТЫ ВБЛИЗИ ЗВЁЗД. Планеты должны быть не меньше Марса, чтобы удержать у своей поверхности воздух и пары воды, но и не такими огромными, как Юпитер и Сатурн, протяжённая атмосфера которых не пропускает солнечные лучи к поверхности. Одним словом, планеты типа Земли, Венеры, возможно, Нептуна и Урана при благоприятных обстоятельствах могут стать колыбелью жизни. А обстоятельства эти довольно очевидны: стабильное излучение звезды; определённое расстояние от планеты до светила, обеспечивающее комфортную для жизни температуру; круговая форма орбиты планеты, возможная лишь в окрестностях уединённой звезды (т. е. одиночной или компонента очень широкой двойной системы). Это главное. Часто ли в космосе встречается совокупность подобных условий?

Одиночных звёзд довольно много — около половины звёзд Галактики. Из них около 10% сходны с Солнцем по температуре и светимости. Правда, далеко не все они также спокойны, как наша звезда, но приблизительно каждая десятая похожа на Солнце и в этом отношении. Наблюдения последних лет показали, что планетные системы, вероятно, формируются у значительной части звёзд умеренной массы. Таким образом, Солнце с его планетной системой должны напоминать около 1% звёзд Галактики, что не так уж мало — миллиарды звёзд.

ЗАРОЖДЕНИЕ ЖИЗНИ НА ПЛАНЕТАХ. В конце 50-х гг. XX столетия американские биофизики Стэнли Миллер, Хуан Оро, Лесли Оргел в лабораторных условиях имитировали первичную атмосферу планет (водород, метан, аммиак, сероводород, вода). Колбы с газовой смесью они освещали ультрафиолетовыми лучами и возбуждали искровыми разрядами (на молодых планетах активная вулканическая деятельность должна сопровождаться сильными грозами). В результате из простейших веществ очень быстро формировались любопытные соединения, например, 12 из 20 аминокислот, образующих все белки земных организмов, и 4 из 5 оснований, образующих молекулы РНК и ДНК. Разумеется, это лишь самые элементарные «кирпичики», из которых по очень сложным правилам построены земные организмы. До сих пор непонятно, как эти правила были выработаны и закреплены природой в молекулах РНК и ДНК.

ЗОНЫ ЖИЗНИ. Биологи не видят иной основы для жизни, кроме органических молекул — биополимеров. Если для некоторых из них, например, молекулы ДНК, важнейшей является последовательность звеньев-мономеров, то для большинства других молекул — белков и в особенности ферментов — важнейшей является их пространственная форма, которая очень чувствительна к окружающей температуре. Стоит повыситься температуре, как белок денатурируется — теряет свою пространственную конфигурацию, а вместе с ней и биологические свойства. У земных организмов это происходит при температуре около 60 °С. При 100—120 °С разрушаются практически все земные формы жизни. К тому же универсальный растворитель — вода — при таких условиях превращается в атмосфере Земли в пар, а при температуре менее 0 °С — в лёд. Следовательно, можно считать, что благоприятный для возникновения диапазон температур — 0—100 °С.

Температура на поверхности планеты в основном зависит от светимости родительской звезды и расстояния до неё. В конце 50-х гг. американский астрофизик, китаец по рождению, Су-Шу Хуанг исследовал эту проблему детально: он рассчитал. На каком расстоянии от звёзд разного типа могут находиться обитаемые планеты, если средняя температура на их поверхности лежит в пределах 0—100 °С. Ясно, что вокруг любой звезды существует определённая область — зона жизни, за границы которой орбиты этих планет не должны выходить. У звёзд-карликов она близка к звезде и неширока. При случайном формировании планет вероятность, что какая-нибудь из них попадёт в эту область, мала. У звёзд высокой светимости зона жизни находится далеко от звезды и очень обширна. Это хорошо, но продолжительность их жизни так мала, что трудно ожидать появления на их планетах разумных веществ (земной биосфере для этого понадобилось более 2 млрд. лет).

Таким образом, по мнению Су-Шу Хуанга, для обитаемых планет наиболее подходят звёзды главной последовательности спектральных классов от F5 до К5. Годятся не любые из них, а лишь звёзды второго поколения, богатые теми химическими элементами, которые необходимы для биосинтеза, — углеродом, кислородом, азотом, серой, фосфором. Солнце как раз и является такой звездой, а наша Земля движется в середине его зоны жизни. Венера и Марс находятся вблизи краёв этой зоны. В результат жизни на них нет.

Итак, можно надеяться, что у любой солнцеподобной звезды, обладающей планетной системой, найдётся хотя бы одна планета с условиями, пригодными для развития на ней жизни.

К сожалению, осталось мало шансов обнаружить активную биосферу в Солнечной системе и совершенно непонятно, как искать её и в других планетных системах. Но если где-то жизнь достигла разумной формы и создала техническую цивилизацию, подобную земной, то можно попытаться вступить с ней в контакт; для созданной людьми техники это уже реальная задача.

                                            Источники:

1. https://studwood.ru/617157/prochie_distsipliny/solntse_proishozhdenie_evolyutsiya_harakteristika

2. https://www.bestreferat.ru/referat-17073.html

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: