Апоптоз

Термин “ апоптоз ” обозначает генетически контролируемый процесс разрушения генома с последующей гибелью клетки.

Гибель клеток путем апоптоза в различных клеточных популяциях имеет сходные морфологические проявления, которые разворачиваются по единому сценарию. В начале процесса клетка утрачивает микроворсинки и контакты с соседними клетками, округляется и отделяется от клеточного пласта. Одновременно в ядре наблюдается маргинация хроматина: он смещается к периферии, тогда как центральные области ядра просветляются. Затем в ядре появляются выпячивания нуклеолеммы (протуберанцы), которые заполняются гетерохроматином. В результате гетерохроматин формирует по периметру ядра скопления с четко очерченными границами. Маргинация хроматина и образование кольца из его глыбок по периферии ядра носит название кариорексис.

Параллельно изменениям ядра при апоптозе наблюдается конденсация цитоплазмы. При этом длительное время сохраняется целостность большинства цитоплазматических органоидов, в том числе лизосом и митохондрий. На более поздних этапах апоптоза плазмолемма начинает формировать глубокие инвагинации, которые приводят к распаду клетки на гроздь апоптозных телец. В некоторых из них содержатся остатки клеточного ядра, состоящие из окруженных нуклеолеммой плотных скоплений хроматина. В дальнейшем апоптозные тельца фагоцитируются макрофагами и другими клетками. Иногда апоптозные тельца не фагоцитируются, а слущиваются в полости, кровеносное русло или почечные канальцы. Длительность апоптоза варьирует в пределах от 1 до 12 час.

В некоторых тканях отдельные морфологические проявления апоптоза могут быть выражены слабо или вообще отсутствовать. Например, у лимфоцитов маргинация хроматина приводит к формированию одного скопления в форме полумесяца. Ядра клеток при апоптозе могут сжиматься, что обозначается термином пикноз. Апоптоз в сердечных мышечных клетках происходит вообще без маргинации и конденсации хроматина. Распад клетки на апоптозные тельца также наблюдается не всегда. Несмотря на это, по комплексу морфофизиологических свойств апоптоз значительно отличается от случайной гибели клеток – некроза, для которого характерна гипертрофия ядра и цитоплазмы вследствие самопереваривания клетки лизосомальными ферментами.

Апоптоз инициируется молекулярными сигналами, которые распознаются специальными рецепторными белками на плазмолемме. Наиболее изученным примером лиганд-рецепторного комплекса, который обеспечивает запуск апоптоза у многих клеток, является пара молекул лиганд Fas – рецептор Fas (CD95). Лиганд Fas экспрессируется, главным образом, на активированных Т-лимфоцитах. Он имеет молекулярную массу 46 кД и находится в мембране в виде димера или тримера. В отличие от лиганда, рецептор Fas экспрессируется не только на T-лимфоцитах, но и на многих других клетках. Его молекулярная масса составляет 36 кД. На цитоплазматической стороне рецептора имеется участок из 70 аминокислот, который участвует в передаче сигнала внутрь клетки - “домен смерти”. Другими примерами запускающих апоптоз молекул могут служить фактор некроза опухолей (ФНО), фактор роста нервов (ФРН) и другие. Все они распознаются специфическими рецепторами, которые на цитоплазматической стороне содержат “домен смерти”.

Основным процессом, происходящим в клетке при апоптозе, является деградация хроматина в клеточном ядре. Она осуществляется путем сочетанного воздействия на хроматин специфических для апоптоза ферментов. Белки хроматина при этом расщепляются цистеиновыми протеазами – каспазами, тогда как ДНК разрезается на фрагменты под действием эндогенных ДНК-аз.

К настоящему времени обнаружено более 10 каспаз. Субстратами для них являются сами каспазы, ламины, топоизомеразы, гистоны и другие белки хроматина.

При запуске апоптоза через рецепторные комплексы Fas и ФНО важная роль принадлежит каспазе-1, которая является продуктом гена ice. Первоначально она была идентифицирована как цистеиновая протеаза, расщепляющая предшественник одного из факторов роста - интерлейкина-1-бета. Каспаза-1 синтезируется в виде неактивного предшественника с молекулярной массой 45 кД, который затем превращается в субъединицы р10 и р20. Активный фермент представляет собой тетрамер, содержащий по две копии каждой субъединицы и атакующий пептидную связь после аспарагиновой кислоты. Активируемая каспазой-1 каспаза-3 подавляет функцию фермента, который участвует в репарации однонитевых разрывов ДНК. Одновременно каспаза-3 активирует ДНК-азу CAD (DFF40), которая разрезает ДНК между нуклеосомами. Субстратом для каспазы-6 является ламин A, который входит в состав ядерного матрикса.

Разрушение ядерной ДНК рассматривается как ключевое событие апоптоза, после которого процесс клеточной гибели становится необратимым. При этом сначала происходит образование крупных фрагментов ДНК, входящих в состав петлевых доменов хроматина. Позднее величина образующихся фрагментов снижается до 200 пар нуклеотидов, что соответствует длине ДНК, приходящейся на одну нуклеосому. Фрагментация ДНК при апоптозе представляет собой активный процесс, требующий затрат энергии, синтеза РНК и белка. В разрушении ядерной ДНК участвуют CAD, ДНК-азы I и II, а также апоптоз-активирующий фактор АИФ.

Таким образом, апоптоз представляет собой генетически запрограммированную реакцию клетки на специфический молекулярный сигнал, результатом которой является уничтожение ее генома. Апоптоз обеспечивает удаление клеток из нормально развивающихся и функционирующих тканей, не вызывая при этом повреждения соседних клеток и не запуская воспалительный процесс.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: