Теория окисления горючих веществ

Превращение горючих веществ при нагревании

Горючие вещества могут различаться по составу, агрегатному состоянию и другим свойствам. Однако воспламенение и самовоспламенение их происходят аналогично.

Твердые горючие вещества в зависимости от состава и строения ведут себя при нагревании по-разному. Например, сера, стеарин, каучук плавятся и испаряются. Такие вещества, как древесина, торф, каменный уголь, бумага при нагревании разлагаются с образованием газообразных продуктов и твердого остатка — угля. Некоторые горючие вещества при нагревании не плавятся и не разлагаются. К ним относятся кокс, антрацит, древесный уголь. Жидкие горючие вещества при нагревании испаряются.

Большинство горючих веществ независимо от их начального агрегатного состояния при нагревании переходит в газообразные продукты. С воздухом они образуют горючие смеси, подготовленные к горению.

Нагрев смеси горючего с воздухом приводит к тому, что при определенной температуре То начинается процесс окисления. Окисление горючих веществ сопровождается выделением тепла, которое при невысокой температуре и, следовательно, малой скорости реакции рассеивается в окружающую среду, поэтому самонагревания смеси не происходит. Только при более высокой температуре смеси и значительной скорости окисления не все выделяющееся тепло успевает отводиться в окружающую среду, и начинается самонагревание горючей смеси. В результате самонагревания смесь без внешнего источника тепла нагревается до температуры горения Тг,появляется пламя и возникает устойчивый процесс горения, который может продолжаться до полного выгорания вещества.

Процесс горения твердых веществ, при нагревании которых не образуется смесь горючих паров или газов с воздухом. В этом случае реакция окисления протекает на поверхности горючего материала, где и возникает горение.

Предложенная А. Н. Бахом и К. Энглером теория окисления была названа перекисной, так как согласно этой теории первыми продуктами окисления являются пероксиды и гидропероксиды. Органические пероксиды обычно рассматривают как производные пероксида водорода Н—О—О—Н, в котором один или два атома водорода замещены органическими радикалами Н—О—О—R. Если в пероксиде водорода один атом водорода замещен радикалом, такие оксидные соединения называются гидропероксидами К—О—О—Н.

Согласно перекисной теории окисления, активация кислорода происходит в результате разрыва одной связи между атомами в молекуле кислорода, на что требуется меньше энергии (343,6 кДж/моль), чем на полную
диссоциацию молекулы кислорода (488,3 кДж/моль).

О2 -О-О-

молекула активная молекула

кслорода кислорода

Активная молекула кислорода легко вступает в соединение с горючими веществами, не распадаясь на атомы

СН4 + -О-О- СН3— О—О—Н

гидропероксид метила

СН3 – СН3 + -О-О- СН3 –О-О– СН3

пероксид диметила

Энергия разрыва связи —О—О— в пероксидах и гидропероксидах значительно ниже (125—167 кДж/моль), чем в молекуле кислорода О2, поэтому они весьма реакционноспособны и обычно малоустойчивы. При нагревании и механических воздействиях они легко распадаются с образованием новых веществ или радикалов. Образующиеся при распаде пероксидов радикалы являются активными центрами реакций окисления.

Однако перекисная теория окисления не в состоянии объяснить существование индукционного периода, предшествующего видимой реакции, резкое действие следов примесей на скорость процесса и др. Это было объяснено учением о цепных реакциях.

Цепными называются реакции, идущие через ряд стадий (через ряд промежуточных реакций), в которых образуются промежуточные соединения со свободными валентностями, так называемые активные центры, являющиеся зародышами последующих быстропротекающих стадий процесса.

Цепные реакции могут быть разветвляющиеся и неразветвляющиеся. Типичной неразветвляющейся цепной реакцией является взаимодействие хлора с водородом. В ней каждый активный центр вызывает появление только одного нового активного центра; поэтому реакция может продолжаться, но не ускоряться. В разветвляющейся цепной реакции каждый активный центр зарождает два или более новых активных центра. Один из новых центров будет продолжать цепь, а второй начинает новую. Примером разветвляющейся цепной реакции может служить реакция водорода с кислородом, протекающая при низких давлениях и температуре около 900 °С.

Цепь Разветвление

I О2 + Н2 = 2 Н III + О2 =Н +

II Н + Н2 = Н2О + IV + Н2 =Н +

Обрыв цепи в объеме

V+ О2 + М НО2 + М

(М— молекула вещества, не участвовавшего в реакции).

Обрыв цепи на стенке

IV Н + Н + стенка Н2

В результате реакций (III) и (IV) образуется по два активных центра; следовательно, при этих реакциях цепь разветвляется. Цепные реакции лежат в основе многих химических процессов, в том числе окисления и горения.

Основное отличие современного представления о механизме окисления от перекисной теории состоит в том, что начальной фазой процесса является не активация молекул кислорода, а активация молекул окисляющегося вещества.

Вещества с низкой начальной температурой окисления представляют наибольшую опасность, ибо они способны в процессе окисления самонагреваться, что иногда ведет к возникновению горения.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: