Конденсаторы

Конденсаторы занимают второе после резисторов место по степени использования в электронных устройствах. Они представляют собой довольно интересные электронные штучки. В них хранятся электроны, притягиваясь к положительному полюсу. Если убрать приложенное к конденсатору напряжение, то электроны постепенно рассосутся. Благодаря протяженности во времени накопления и рассасывания электронов, конденсаторы могут работать в качестве элементов, сглаживающих перепады напряжения. В некоторых случаях цепочку из резистора и конденсатора можно успешно использовать в качестве таймера. Именно благодаря конденсаторам становится возможной работа усилителей и тысяч других схем. Конденсаторы используются в большинстве электронных устройств для выполнения самых разных функций.

-Создания таймеров: простейший таймер представляет собой своеобразный электронный метроном и состоит из конденсатора и резистора, который контролирует скорость хода такого метронома.

-Сглаживания напряжений: в источниках питания, преобразующих переменный ток в постоянный, практически всегда используются конденсаторы, помогающие сглаживать пульсации напряжения и, таким образом, получать стабильный постоянный потенциал.

-Ограничения постоянного тока: при последовательном соединении конденсатора и источника сигнала, например, микрофона, конденсатор блокирует постоянный ток, но пропускает переменный. Данное свойство конденсатора основывается на том, что он представляет собой сопротивление, обратно пропорционально зависящее от частоты. Чем выше частота проходящего сигнала, тем меньше сопротивление конденсатора и наоборот; для постоянного тока частота изменения сигнала равна 0, потому сопротивление приближается к бесконечности. Эта функция используется почти во всех усилителях.

-Подстройки частоты: конденсаторы часто используются для получения простых фильтров, отсекающих сигналы переменного тока с частотой ниже или выше некоторого заданного порога. Изменяя величину емкости конденсатора, можно изменить предельную частоту фильтра.

Хотя может показаться, что конденсаторы должны являться весьма сложными элементами, особенно учитывая, сколько разных функций они выполняют, это далеко не так. Типичный конденсатор имеет внутри две металлические пластины, между которыми обязательно есть зазор, заполненный диэлектрическим материалом - как еще принято называть изолятор.

Среди диэлектриков, разделяющих пластины конденсаторов, можно упомянуть пластик, слюду и специальную бумагу.

Конденсаторы характеризуются емкостью, которая, в свою очередь, измеряется в фарадах. Чем больше емкость конденсатора, тем больше электронов он может накопить за один раз.

Примечательно, что емкость в 1 Ф очень велика, поэтому большинство конденсаторов маркируются на микрофарады, или миллионные доли фарада. Нередко встречаются и еще меньшие емкости: нанофарады (миллиардная доля фарада) и пикофарады.

Эти приставки принято сокращать с помощью аббревиатур: микрофарады до мкФ, нанофарады до нФ, а пикофарады - до пФ. В иностранной документации микрофарады часто обозначают греческой строчной буквой Ниже показано несколько примеров обозначения емкостей. Очень часто за рубежом (особенно на машинных чертежах) греческую букву заменяют латинской u: uF для мкФ и т.п.

-Конденсатор 10 мкФ имеет емкость 10 миллионных фарада.

-Конденсатор 1 мкФ имеет емкость 1 миллионную фарада.

-Конденсатор 100 пФ имеет емкость 100 миллионных от одной миллионной фарады.

Рабочим напряжением называется максимальное напряжение на конденсаторе, которое он может выдержать без ущерба для себя. При больших напряжениях ток может просто "пробить" диэлектрик. Если подать на конденсатор напряжение, большее, чем то, на которое он рассчитан, то между металлическими пластинами проскочит искра, которая бесповоротно повредит его, сделав, таким образом, элемент бесполезным (закоротит его).

Типичный конденсатор, предназначенный для работы в схемах постоянного тока, имеет рабочее напряжение от 16 до 50 В. Как правило, большие значения и не требуются, поскольку напряжения питания таких схем обычно лежат в пределах от 3,3 до 12 В. Только в схемах, в которых планируются большие величины напряжений, имеет смысл позаботиться о выборе более высоковольтных конденсаторов. Из соображений безопасности хорошо выбирать конденсаторы, рабочие напряжения которых минимум на 10-15 процентов больше, чем максимально возможные в данной схеме.

Наиболее часто в виде диэлектриков используются оксид алюминия, тантал, керамика, слюда, полипропилен, полиэстер (или майлар®), бумага и, наконец, полистирен. Если в схеме явно указано, что конденсатор такой-то должен быть такого-то типа, то необходимо потрудиться и найти требуемый.

В таблице 2 приведен список основных типов конденсаторов и их емкости.

Таблица 2 - Характеристики конденсаторов

Тип Диапазон емкостей Применение
Керамический 1 пФ... 2,2 мкФ Фильтры, блокировочные конденсаторы
Слюдяной 1 пФ... 1 мкФ Таймеры, осцилляторы, точные схемы
Металлизированный фольговый до 100 пФ Блокировка постоянного тока, источники питания
Поликарбонатный 0,001... 100 мкФ Фильтры
Полиэстеровый 0,001... 100 мкФ Фильтры
Полистиреновый 10 пФ... 10 мкФ Таймеры, схемы подстройки
Бумажный фольговый 0,001... 100 мкФ Общего применения
Танталовый 0,001... 1000 мкФ Блокировочные, развязывающие конденсаторы
Алюминиевый электролитический 10... 220 000 мкФ Фильтры, блокировочные, развязывающие конденсаторы

Изготовление: кондукторов с емкостями порядка фарад стало возможным только совсем недавно. Развитие технологий и создание новых материалов, таких как микроскопические углеродные гранулы, дало возможность производителям элементов изготавливать конденсаторы даже больших емкостей (существуют конденсаторы очень большой емкости - ионисторы). Память в компьютерах, радиоприемники с электронными часами и многие другие электронные устройства нуждаются в источниках заряда, питающих отдельные узлы в течение длительного времени, когда нет доступа к обычному источнику питания. Именно конденсаторы и выступают в роли таких заменителей батареек.

Конденсаторы бывают совершенно различных форм (рисунок 8).7 Алюминиевые электролитические и бумажные конденсаторы изготавливаются обычно цилиндрической формы. Танталовые, керамические, слюдяные и полистиреновые - более шаровидной, поскольку чаще всего их погружают в емкость с жидкой эпоксидной смолой или пластиком, что и придает им округлые очертания. Однако не все конденсаторы (особенно слюдяные или майларовые) имеют формы, соответствующие какому-то определенному типу, поэтому не стоит судить об их характеристиках только по внешнему виду.


Рисунок 8 - Силуэты различных конденсаторов.

Конденсаторы имеют такие разнообразные формы и размеры, как, пожалуй, ни один другой радиоэлемент

Некоторые конденсаторы и правда имеют на боку маркировку, однозначно определяющую их емкость. Обычно так делают для больших алюминиевых электролитических конденсаторов - их размер позволяет печатать на корпусе как емкость, так и максимальное рабочее напряжение.

Однако более мелкие конденсаторы, такие как слюдяные дисковые конденсаторы с емкостями 0,1 или 0,01 мкФ, имеют только маркировку из трех цифр, обозначающую емкость и допуск номинала. Большинство радиолюбителей не имеют проблем с расшифровкой системы обозначения емкостей.

Система счисления основывается на пикофарадах, а не на микрофарадах. Впрочем, в остальном она совпадает с маркировкой на резисторах. Так, число 103, написанное на конденсаторе, обозначает, что после двух первых цифр, 10, следует дописать 3 нуля, что дает 10 000 пикофарад.

Как правило, любое значение свыше 1000 пикофарад измеряется в микрофарадах. Чтобы преобразовать емкость из пикофарад в микрофарады, нужно просто сдвинуть десятичную точку на 6 разрядов влево. Таким образом, емкость конденсатора из предыдущего абзаца (10 000 пикофарад), записанная в микрофарадах, равняется 0,01 мкФ. В таблице 3, приведен удобный список основных типов маркировки на конденсаторах, подчиняющихся данной системе.

Таблица 3

Маркировка Значение емкости
nn (число от 01 до 99) nn пкФ
  0.0001 мкФ
  0.001 мкФ
  0.01 мкФ
  0.1 мкФ
  0.00022 мкФ
  0.0022 мкФ
  0.022 мкФ
  0.22 мкФ
  0.00033 мкФ
  0.0033 мкФ
  0.033 мкФ
  0.33 мкФ
  0.00047 мкФ
  0.0047 мкФ
  0.047 мкФ
  0.47 мкФ

В другой, несколько реже используемой системе маркировки, применяются как цифры, так и буквы, например:

4R3

Расположение буквы R указывает позицию десятичной точки, разделяющей целую и дробную части, т.е. запись 4R3 обозначает на самом деле 4,3. Единицы измерения в этой системе записи не указываются, так что данная маркировка может стоять и на конденсаторе 4,3 пФ, и на конденсаторе 4,3 мкФ.

Емкость конденсатора можно измерить либо специальным прибором, либо простым мультиметром с емкостным входом. В большинстве мультиметров этот вход сделан таким образом, что конденсатор необходимо всунуть прямо в отверстия на приборе, чтобы исключить емкость проводов. Это позволяет получать более точные измерения.

Большинство конденсаторов имеют весьма приблизительные параметры. Значения емкостей, отпечатанные на элементе, могут довольно значительно отличаться от реальных. Фактически они могут даже быть совсем разными. Эти проблемы связаны с технологиями изготовления конденсаторов, а совсем не с тем, что производители радиоэлементов нарочно хотят досадить радиолюбителям. К счастью, ошибки в точности емкости редко приводят к каким-либо негативным последствиям для большинства схем, однако следует помнить об этом, чтобы, если вдруг потребуется конденсатор высокой точности, знать, что покупать.

Как и резисторы, конденсаторы специально маркируются согласно их допускам, и эта маркировка также указывает процент допуска. В большинстве случаев допуск от номинала указывает одна буква, найти которую можно напечатанную саму по себе либо после кода, обозначающего величину емкости, например так: 103Z. Буква Z в данном случае указывает на то, что емкость конденсатора имеет допуск от +80% до -20%, т.е. реальная емкость этого конденсатора может отличаться от заявленной 0,01 мкФ на 80 процентов в большую сторону или на 20 процентов в меньшую. Значения основных букв, показывающих норму допуска, даны в таблице 4.

Таблица 4. Маркировка допусков емкости конденсаторов

Код Значение допуска емкости
B 0,1 пФ
C 0,25 пФ
D 0,5 пФ
F 1%
G 2%
J 5%
K 10%
M 20%
Z + 80...- 20%

Ёмкость конденсатора тем выше, чем больше площадь обкладок, меньше расстояние между ними и чем выше диэлектрическая проницаемость вещества между обкладками.

Простейший конденсатор состоит из двух обкладок, между которыми размещён слой диэлектрика. Для экономии места диэлектрики и обкладки конденсаторов большой ёмкости сворачивают в рулоны. Диэлектрики конденсаторов могут быть выполнены:

· из оксидной плёнки;

· из газов или воздуха;

· из жидкостей;

· из твёрдых органических материалов;

· из твёрдых неорганических материалов.

Различают постоянные, подстроечные и переменные конденсаторы. Постоянные конденсаторы обладают фиксированной ёмкостью, подстроечные конденсаторы допускают некоторое число регулировок ёмкости, а конденсаторы переменной ёмкости допускают её многократное изменение. Фактическая ёмкость постоянных конденсаторов всегда отличается от номинальной ёмкости. В документации на конденсаторы обычно указаны допустимые отклонения фактических ёмкостей относительно номинальных.

Важным параметром конденсаторов выступает тангенс угла потерь, которым называют отношение активной мощности к реактивной при фиксированной частоте, напряжённости поля, температуре.

Ионисторы – это химические источники тока, обладающие исключительно высокой ёмкостью, обусловленной наличием двойного электрического слоя, возникающего на поверхности электродов, которые помещены в электролит. Ионисторы не относят к конденсаторам, хотя ёмкость – это их основной показатель. Ионисторы не имеют диэлектрика, а наличие изоляторов, называемых сепараторами, между электродами необходимо сугубо для исключения их замыкания, но не для увеличения ёмкости. Сепараторы изготавливают из таких материалов, которые свободно пропускают ионы электролита. Электроды выполняют из материалов, которые порождают заряды с противоположными знаками. Их изготавливают из пористых веществ, например, активированного угля или графена, чтобы получить очень большую площадь поверхности, к которой поступает электролит. В качестве твёрдого электролита используют RbAg4J5 и пр. Ионы электролита притягиваются к электродам, и на поверхностях каждого электрода возникает слой из анионов и катионов, которые образуют электрический слой. Так как электрические слои возникают на обоих электродах, они носят название двойного электрического слоя. Толщина электрического слоя чрезвычайно мала и может составлять несколько нанометров, ввиду чего ёмкость ионисторов может быть очень большой. Отдельные экземпляры ионисторов обладают ёмкостью в тысячи фарад при номинальном напряжении в несколько вольт. Ионисторы применяют в резервных источниках питания, в устройствах запуска двигателей и т.д.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: