double arrow

Квантовые числа. Основные положения квантовой механики


Основные положения квантовой механики.

В 1900 г Макс Планк предположил, что поглощение либо испускание энергии может осуществляться строго определенными дискретными порциями – квантами:

Е = hν,

где h – постоянная Планка (равная 6,62 10-34 Дж с), ν – частота излучения, (равная ν = с/λ, где с – скорость света, λ – длина волны).

Бор предложил, что момент количества движения электрона (р) кратен h/2π:

p = h/(2π).

1905 г Эйнштейн постулировал, что любое излучение состоит из дискретных частиц-квантов излучения, называемых фотонами (ΔЕ = mc2). В результате возникло представление о двойственной природе света (дифракция, интерференция и свойства корпускул).

В 1924 г Луи де Бройль распространил это представление на электроны. Объединив уравнения ΔЕ=mc2 и Е=h.ν, получил уравнение для определения длины волны, которое носит его имя – волна де Бройля: λ = h/mc.

Таким образом, электрон обладает и свойствами частицы и волны одновременно, т.е. корпускулярно-волновой дуализм.

В 1927 г Гейзенберг формулирует принцип неопределенности: положение и скорость электронов не поддаются одновременному определению с абсолютной точностью:




Dх∙D(m∙υ) ≥ h/2π,

где m – масса электрона, Dυ и Dх – ошибка в определении скорости и координаты электрона соответственно.

В каждый момент времени точно можно определить лишь одно из этих двух свойств. Поэтому принято представление об электронном облаке.

Область пространства, в которой высока вероятность обнаружения электрона, называется орбиталью. Орбиталь может рассматриваться как некоторое распределение заряда в пространстве – электронное облако.

Энергетический уровень электрона в атоме определяется четырьмя квантовыми числами.

1. Главное квантовое число n (n = от 1 до ¥ ) определяет энергию электрона (ē) на уровне в атоме, Е = –A/n2 и радиус наибольшей вероятности его нахождения r = n2/B (где А и В – постоянные для данного атома химического элемента, зависимые только от заряда ядра).

2. Орбитальное квантовое число (l = 0, 1, 2,…до (n–1)) определяет форму электронного облака и энергию электрона на подуровне:

под уровень s p d f
l

3. Магнитное квантовое число (m = –l, 0, +l) определяет расположение орбитали в пространстве.

Число возможных энергетических орбиталей на подуровне равно (2l+1). Графически атомная орбиталь изображается .

Орбитальное квантовое число (l) Магнитное квантовое число (m) Число атомных орбиталей
s 
p –1,0,+1 
d –2, –1, 0, +1, +2 
f –3, –2, –1, 0, +1, +2, +3 .

4. Спиновое квантовое число (ms), ). Упрощенно спин можно представить как характеристику собственного вращения электрона вокруг своей оси.







Сейчас читают про: