Вопрос 1.
Соударение тел. Абсолютно упругий и неупругий удары. Применение законом сохранения для описания столкновения тел.
Абсолютно неупругим ударом, называется столкновение двух тел, в результате которого они соединяются вместе и движутся дальше как одно тело.
Сталкивающиеся тела деформируются, возникают упругие силы и т.д. Однако если удар неупругий то, в конце концов все эти процессы прекращаются, и в дальнейшем оба тела, соединившись вместе, движутся как единое твёрдое тело.
v1 v2
![]() | ![]() |

m1 m2
Рассмотрим абс. неупругий удар на примере столкновения двух шаров. Пусть они движутся вдоль прямой, соединяющей их центры, со скоростями v1 и v2. В этом случае говорят что удар является центральным. Обозначим за V общую скорость шаров после соударения. Закон сохр. Импульса даёт:
m1v1+m2v2=(m1+m2)V Þ V=(m1v1+m2v2)/(m1+m2)
Кин. энергии системы до удара и после: K1=1/2(m1v12+m2v22) K2=1/2(m1+m2)V
Пользуясь этими выраж. получаем: K1-K2=1/2m(v1-v2)(v1-v2)
где m =m1m2/(m1+m2) приведенная масса шаров. Таким образом, при столкновении двух абсолютно неупругих шаров происходит потеря кин. энергии макроскопического движения, равная половине произведения приведённой массы на квадрат относительной скорости.
|
|
|
Абсолютно упругим ударом называется столкновение тел, в результате которого их внутренние энергии не меняются. Пример: Столкновение бильярдных шаров из слоновой кости, при столкновениях атомных, ядерных частиц. Рассмотрим центральный удар двух шаров, движущ-ся навстречу друг другу:
(m1v12)/2+(m2 v22)/2=(m1u12)/2+(m2 u22)/2
и:
m1v1+m2v2=m1u1+m2u2

u1=[(m1-m2)v1+2m2v2] / (m1 +m2)
u2=[(m2-m1)v2+2m1v1] / (m1+m2)
При столкновении двух обинаковых абсолютно упругих шаров они просто обнениваются скоростями.
Вопрос 2.

