Сканирующий туннельный микроскоп

Сканирующие туннельные микроскопы позволяют изучать структуру поверхности образца с разрешающей способностью до отдельных атомов. В основе работы микроскопа лежит использование т.н. туннельного эффекта. В его основе лежит явление прохождения электронов через барьер, образованный разрывом электрической цепи, — очень малым расстоянием (туннельным зазором), создаваемым между остриём зонда и электропроводящей поверхностью исследуемого объекта (рис. 1-8, рис. 1-9). При исследовании мягкого биологического материала образец должен быть жёстко фиксирован на проводящем субстрате (например, молекула ДНК на кристалле золота). Для появления туннельного тока (туннелирования электронов) расстояние между остриём зонда и проводящим образцом должно составлять доли нанометра, а прикладываемое между ними напряжение — от единиц милливольт до вольт. При исследовании образца замеряется локальная плотность электронов в туннельном токе. Ток зависит также от химической природы зонда и образца, что даёт возможность исследовать электронные свойства изучаемого объекта.

Рис. 1-8. Принцип действия сканирующего туннельного микроскопа. Токопроводящее остриё зонда сначала приближают к образцу на расстояние около 1 нм. На таком близком расстоянии электроны туннелируют сквозь щель между острием и объектом. [120]

Рис. 1-9. Возникновение туннельного эффекта (туннелирование электронов). При уменьшении расстояния между остриём зонда и проводящим изучаемым объектом до нескольких ангстрем электроны могут преодолевать это расстояние. [120]


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: