Отражений и их построение

В зале звуковые волны распространяются от источника к ограждающим поверхностям, от которых многократно отражаются. В результате в помещении образуется звуковое поле.

Приближенная оценка формы и размеров помещений с акустической точки зрения состоит в анализе звукового поля на основе принципов геометрической акустики, то есть, в рассмотрении распространения прямых и отраженных звуковых волн и построении так называемого "лучевого эскиза".

При определенных условиях можно вместо звуковых волн рассматривать звуковые лучи, в направлении которых распространяются эти волны. Распространение таких лучей аналогично распространению световых лучей в геометрической оптике, и построение геометрических (лучевых) отражений широко применяется в архитектурной акустике:

1) падающий и отраженный от какой-либо точки поверхности луч образует равные углы (угол падения и угол отражения) с нормалью к отраженной поверхности в этой точке;

2) падающий и отраженный лучи лежат совместно с нормалью в одной плоскости (лучевая плоскость).

Рисунок 3 - Отражение звука от плоского отражателя

Допустимость применения способа геометрических (лучевых) отражений зависит от длины звуковой волны, размеров отражающей поверхности и ее расположения по отношению к источнику звука и точке приема. Отражающая поверхность должна при этом иметь массу не менее 20 кг/м2, и ее коэффициент звукопоглощения α для рассматриваемых частот не должен превышать 0,1. На рис. 3 отражающая поверхность взята в виде прямоугольного плоского отражателя со сторонами, равными 2a и 2b, центр его совпадает с точкой геометрического отражения О, а сторона параллельна лучевой плоскости P, в которой лежат падающий звуковой луч QO, отраженный луч ОМ и нормаль ОN; R0 - расстояние от источника Q до точки O; R - расстояние от точки O до точки приема М; g - углы падения и отражения звукового луча.

При построении геометрических отражений от плоскости удобен прием, показанный на рис. 4а. Здесь используется мнимый источник Q1, симметричный с действительным точечным источником Q по отношению к отражающей плоскости и находящийся по другую ее сторону. Для построения мнимого источника надо опустить из точки Q перпендикуляр QA на отражающую плоскость и на продолжении его отложить отрезок AQ1, равный отрезку QA. Прямые, проведенные из мнимого источника Q1, после пересечения ими отражающей плоскости, удовлетворяют условию равенства углов падения и отражения, то есть являются искомыми отраженными лучами, создаваемыми действительным источником Q.

Рисунок 4. - Построение геометрических отражений звуковых лучей с помощью мнимого источника:

а - отражение от плоскости;

б - отражение от кривой поверхности;

Q - источник звука;

Q1 - мнимый источник звука;

1 - прямые лучи,

2 – отраженные звуковые лучи.


Метод мнимых источников применим и при построении отражений от кривых поверхностей. Если требуется найти отражение от какой-либо точки O кривой поверхности С (см. рис. 4б) при заданном положении источника Q, то следует в точке O построить касательную плоскость Т к поверхности. Мнимым источником в этом случае является точка Q1, симметричная источнику Q относительно касательной плоскости; продолжение ОМ прямой Q1O после пересечения ее с поверхностью С является искомым отраженным лучом. Здесь для каждой точки O отражающей поверхности приходится находить свой мнимый источник Q1 в отличие от ранее рассмотренного случая (см. рис. 4а), у которой для отражения от любой ее точки мнимый источник один и тот же (при заданном положении источника Q). Суммарная длина QO + ОМ лучей QO и ОМ, дающая длину полного хода отраженного звука от источника Q до некоторой точки приема М, равна расстоянию Q1M от мнимого источника Q1 до точки М (см. рис. 4а, 4б). При этом, разумеется, следует брать истинные длины указанных отрезков, а не их проекций.

Если лучевая плоскость Р (см. рис.3) параллельна одной из плоскостей проекций (вертикальной или горизонтальной), то углы падения и отражения проецируются на эту плоскость без искажения, и построение отраженного луча выполняется при помощи описанных приемов.

3. Определение рекомендуемого времени реверберации (Тр)

Большое значение в зале имеет время реверберации. Оптимальные величины времени реверберации в диапазоне 500-1000 Гц для залов различного назначения в зависимости от объема зала приведены на рис.6.

Рисунок 5 - Построение геометрического отражения при касательной плоскости, перпендикулярной плоскости проекции.

1 – залы для ораторий и органной музыки;

2 – залы для симфонической музыки;

3 – залы для камерной музыки, залы оперных театров;


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: