Преобразователь тока в напряжение на одном операционном усилителе

Большой собственный коэффициент усиления ОУ приводит к тому, что инвертирующий вход является виртуальной землей, поэтому протекающий через резистор RОСток равен току IВХ. Следовательно, выходное напряжение определяется соотношением UВЫХ = -RОСIВХ.

Показанная на рис. 4.3 схема хорошо подходит для измерения малых токов - от десятков миллиампер и менее, вплоть до долей пикоампера. Верхний предел тока ограничивается выходным током ОУ. Недостаток схемы состоит в том, что ее нельзя включать в произвольной точке контура с током, так как входной ток должен замыкаться на землю.

Коэффициент преобразования

где AV- коэффициент усиления ОУ и RЭКВ - эквивалентное сопротивление между входом ОУ и землей, включающее в себя сопротивление источника тока и дифференциальное входное сопротивление ОУ.

Входное сопротивление:

Выходное напряжение смещения:

где UСМ.ВХ - входное напряжение смещения ОУ,

IСМ,ВХ - входной ток смещения ОУ.

Нижний предел измеряемого тока определяется входным напряжением смещения, входными токами ОУ и их дрейфами. Для того, чтобы свести к минимуму погрешности схемы, учтите следующие моменты.

1. Погрешности смещения.

При малых входных токах (менее 1 мкА) лучше использовать ОУ с полевыми входами, имеющие незначительные входные токи.

Нужно стремиться к тому, чтобы выполнялось условие RЭКВ >> RОС, так как иначе входное напряжение смещения будет дополнительно усиливаться.*

Погрешность, связанную с входными токами, можно уменьшить, включая дополнительный резистор, равный RОС, между неинвертирующим входом и землей. При этом общее входное смещение будет равно:

UСМ.ВХ + RОСΔIСМ.ВХ,где ΔIСМ.ВХ - разность входных токов ОУ.

Для ограничения высокочастотных шумов дополнительного резистора и предотвращения самовозбуждения ОУ можно параллельно ему включить шунтирующий конденсатор (10 нФ - 100 нФ).

Соблюдайте аккуратность при работе с очень малыми токами, потому что значительные погрешности могут быть связаны с токами утеч­ки. Используйте охранное кольцо (рис. 4.4) для того, чтобы токи утечки замыкались на него, а не на вход схемы. Охранные кольца должны быть на обеих сторонах платы. Плату нужно тщательно очистить и изолировать для предотвращения поверхностной утечки. Наконец, для получения очень малых токов утечки (порядка пикоампер) при монтаже входных цепей можно использовать дополнительные стойки из фторопласта.

Чтобы уменьшить дрейф входных токов от температуры, следует ограничить тепло, выделяемое самим ОУ. Для этого лучше снизить напряжение питания до минимума. Кроме того, к выходу ОУ не стоит подключать низкоомную нагрузку (общее сопротивление на­грузки должно быть не менее 10 кОм).

При измерении малых токов регулировать смещение лучше в после­дующих каскадах схемы, или воспользоваться подходом, показан­ным на рис. 4.7, при котором не требуется слишком высокая чув­ствительность усилителя.

2. Погрешности коэффициента усиления.

ОУ и резистор обратной связи необходимо выбирать так, чтобы AVRЭКВ >> RОС, иначе могут возникнуть большие погрешности ко­эффициента усиления и нелинейность характеристики. Необходимо подобрать прецизионные резисторы с малым дрейфом. Лучше всего использовать высокостабильные резисторы на основе металлических или металлоокисных пленок. Лучшей конструкцией для высокоом-ных резисторов (более 1 ГОм) является стеклянный корпус, покры­тый силиконовым лаком для исключения влияния влажности. Не­которые резисторы имеют внутренний металлический защитный экран.

Чтобы не использовать резисторы слишком больших номиналов (у них низкая стабильность и они довольно дороги), можно использовать Т-образную обратную связь (рис. 4.5).

Такое соединение позволяет повысить коэффициент преобразования без использования высокоомных резисторов, но это возможно только при достаточном запасе собственного коэффициента усиления ОУ. Отметим, что монтаж схемы должен быть выполнен так, чтобы предотвратить шунтирование Т-звена сопротивлением утечки, т.е. обеспечить хорошую изоляцию точек А и В. Т-образное соединение имеет серьезный недостаток, заключающийся в усилении напряжения смещения ОУ А1в (R2 + R1)/R1раз, что иногда может ограничить его применение.

3. Частотная характеристика.

Конечная емкость источника сигнала Си может привести к неустойчивости схемы, особенно при использовании длинных входных кабелей. Этот конденсатор на высоких частотах вносит фазовое за­паздывание в петле обратной связи ОУ. Проблема решается включением конденсатора небольшой емкости CОС параллельно резистору RОС, графическая иллюстрация этого способа показана на рис. 4.6.


4. Шум.

Выходной шум схемы складывается из трех основных компонентов: шум резистора RОС, входное шумовое напряжение ОУ А1и входной шумовой ток ОУ А1.

Для ОУ с большим коэффициентом усиления при RОС> 1 МОм преобладает шум, генерируемый резистором RОС.

Входное шумовое напряжение ОУ умножается на коэффициент усиления для шума (рис. 4.6). Как правило, этот коэффициент возрастает с ростом частоты, что ведет к появлению значительного высокочастотного шума.

Входной шумовой ток ОУ А1умножается на величину RОС, и в таком виде появляется на входе.

5. Помехи.

Преобразователи тока в напряжение с большим усилением являются высокочувствительными, высокоомными схемами. Поэтому для защиты от помех их необходимо заключать в экранирующий корпус. Важное значение имеет хорошая развязка по питанию. Наконец, эти схемы могут быть очень чувствительными к механическим вибрациям.

На рис. 4.7 показана схема усилителя сигнала фотодиода. Для регу­лировки смещения используется потенциометр.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: