Студопедия
Обратная связь

Сколько стоит твоя работа?
Тип работы:*
Тема:*
Телефон:
Электронная почта:*
Телефон и почта ТОЛЬКО для обратной связи и нигде не сохраняется.

Авиадвигателестроения Административное право Административное право Беларусии Алгебра Архитектура Безопасность жизнедеятельности Введение в профессию «психолог» Введение в экономику культуры Высшая математика Геология Геоморфология Гидрология и гидрометрии Гидросистемы и гидромашины История Украины Культурология Культурология Логика Маркетинг Машиностроение Медицинская психология Менеджмент Металлы и сварка Методы и средства измерений электрических величин Мировая экономика Начертательная геометрия Основы экономической теории Охрана труда Пожарная тактика Процессы и структуры мышления Профессиональная психология Психология Психология менеджмента Современные фундаментальные и прикладные исследования в приборостроении Социальная психология Социально-философская проблематика Социология Статистика Теоретические основы информатики Теория автоматического регулирования Теория вероятности Транспортное право Туроператор Уголовное право Уголовный процесс Управление современным производством Физика Физические явления Философия Холодильные установки Экология Экономика История экономики Основы экономики Экономика предприятия Экономическая история Экономическая теория Экономический анализ Развитие экономики ЕС Чрезвычайные ситуации ВКонтакте Одноклассники Мой Мир Фейсбук LiveJournal Instagram 500-летие Реформации

Нелинейные колебательные процессы в мультистабильных системах

<== предыдущая статья | следующая статья ==>

 

Наряду с динамическими переменными, зависимость которых от времени составляет сущность колебательного процесса, при рассмотрении колебательных систем приходится иметь дело также с параметрами, постоянными во времени, но, от задания которых, может зависеть характер реализующегося в системе режима.

Например, качественные изменения колебательных режимов, возникающие при медленном изменении параметров системы, могут приводить к появлению, так называемых бифуркаций. Одной из распространенных проявлений бифуркаций и является возбуждение автоколебаний в нелинейных системах при переходе параметра через критическое, бифуркационное значение амплитуды, например, при плавном увеличении коэффициента усиления колебаний.

Чтобы познакомиться с дальнейшими примерами бифуркаций, обратимся к одной из самых простых колебательных систем, представленной шариком в лунке рис. 14.3.

Рис. 14.3 Шарик в лунке в случае одного (а) и нескольких (б) устойчивых положений равновесия.

В присутствии трения шарик будет совершать колебания вблизи точки минимума, приходя, в конце концов, в состояние устойчивого равновесия. Можно рассмотреть и более сложный случай и предположить, что профиль лунки имеет более одного минимума, то есть содержит несколько лунок, соответственно увеличится и число устойчивых состояний такой колебательной системы. В зависимости от того, какой была исходная координата и скорость шарика, он попадет в итоге в одну из лунок. В данном случае мы будем иметь дело с колебательной системой, имеющей несколько аттракторов, в качестве которых в данном случае выступают состояния устойчивого равновесия.

Если какая-нибудь колебательная система характеризуется наличием нескольких потенциально возможных установившихся состояний или колебательных режимов, то говорят, что имеет место мультистабильность.

В линейной системе мультистабильность невозможна. В частности, в данном примере с шариком наличие у профиля нескольких ямок с очевидностью требует, чтобы зависимость возвращающей силы от координаты частицы была нелинейной.

Предположим теперь, что форму профиля можно регулировать, изменяя параметры системы, так, что в процессе этой деформации могут появляться или пропадать локальные минимумы.

Одно из интересных явлений будет наблюдаться в ситуации, когда ямка, в которой располагается шарик, сближается с локальным максимумом и исчезает. Это бифуркация слияния устойчивого и неустойчивого состояний равновесия. После бифуркации локальный максимум исчезает, и система должна скачком перейти в новое состояние, достаточно удаленное от исходного. Говоря о скачке, мы имеем в виду, что координата частицы претерпит существенное изменение в итоге процесса перехода в новое состояние. Что касается развития этого процесса во времени, то на начальной стадии он будет достаточно медленным, так как локально профиль в области нахождения частицы практически плоский.

Рис. 14.4 Скачкообразное изменение состояния равновесия системы «шарик в лунке» при медленном изменении ее профиля.

Рис. иллюстрируют как изменяется состояние системы «шарик в лунке» при медленном изменении формы потенциального рельефа. При таком скачкообразном изменении состояния системы говорят о жесткой бифуркации или катастрофе.

 

Рис. 14.5 Изменение потенциального рельефа, соответствующее двум траекториям движения по плоскости параметров, приводящим к реализации двух различных состояний устойчивого равновесия.

В зависимости от того, как выбран путь на плоскости параметров при их медленном изменении, можно прийти в одну и ту же точку области бистабильности, имея результатом разные состояния равновесия.

 

<== предыдущая статья | следующая статья ==>





 

Читайте также:

Просвечивающий электронный микроскоп

Эффект Джозефсона

Графен

Физические основы построения измерительных устройств с использованием связанных колебаний осцилляторов

Квантово-механическая объяснение явления сверхпроводимости

MEMS-дисплеи.

Эффект Зеемана

Метод Брэгга

Физико-химические основы построения биосенсоров на основе кантилеверов

Синергетический подход к анализу динамики нелинейных процессов в сложных системах

Гелиевый ионный микроскоп

Кантилеверные сенсоры на основе высокомолекулярных и биополимерных систем

Применения сверхпроводников в измерительной технике

Вернуться в оглавление: Современные фундаментальные и прикладные исследования в приборостроении

Просмотров: 2359

 
 

54.81.45.122 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам.