Классификация конфликтов (игр)

В качестве первого классификационного признака возьмем множество коалиций интересов Â и. Если это множество пусто, то конфликт вырождается в явление, в исходах которого никто не заинтересо­ван. Математические модели такого рода явлений составляют со­держание традиционной описательной математики.

Если множество Âu состоит из единственной коалиции ин­тересов, то мы также имеем конфликт, выродившийся в явле­ние, в котором единственная заинтересованная сторона стре­мится выбрать наиболее предпочтительную для себя ситуацию.

Математическая трактовка этого круга вопросов сводится к разного рода экстремальным задачам, классическим, как, на­пример, решаемые в дифференциальном или вариационном ис­числениях или современным, которые составляют предмет раз­личных отраслей оптимального программирования (линейное, дискретное, динамическое, стохастическое и т.д.).

Собственно теория игр начинается тогда, когда множество Âu. насчитывает не менее двух заинтересованных сторон.

Следующий признак — количество коалиций действия. Яс­но, что рассмотрение конфликтов с пустым множеством коалиций действия лишено смысла: множество ситуаций состоит более чем из одного элемента и вопрос об отношении предпоч­тения вообще не возникает.

Если в конфликте имеется одна коалиция, то исследование конфликта уже становится содержательным. В этом случае име­ется единственное множество стратегий sk, а множество всех ситуаций является его подмножеством: S Ì sk. Поэтому рас­смотрение подобного конфликта можно начинать с этого мно­жества ситуаций, считая их стратегиями единственной коалиции действия. Поскольку для таких конфликтов стратегии совпадают с ситуациями, можно применительно к ним термин «стратегия» не употреблять вовсе. В связи с этим такого рода конфликты принято называть нестратегическими.

Нестратегическим конфликтам противостоят конфликты, в которых участвуют более одной коалиции действия. Они назы­ваются стратегическими. В большинстве работ по теории игр рассматриваются такие стратегические конфликты, в которых множества коалиций действия и коалиций интересов совпадают (как те, так и другие коалиции называют в этом случае игрока­ми), множество ситуаций совпадает с декартовым произведени­ем множеств стратегий:

S = П SK,

к Î Âd.

а отношения предпочтения (для игроков) определяются соответствующими функциями. Такие конфликты называются бескоалиционными.

Важным частным случаем бескоалиционного конфликта яв­ляется тот, когда число игроков равно двум, а значения функ­ций выигрыша в любой ситуации равны по величине и проти­воположны по знаку:

Н1 (s) = ¾ H2 (s).

Такие конфликты называются антагонистическими, или конфликтами двух лиц с нулевой суммой.

Основным изучавшимся во многих исследованиях принци­пом оптимальности в бескоалиционных конфликтах являлось стремление игроков к ситуациям равновесия. Этот принцип оп­тимальности иногда называют принципом осуществимости це­ли, потому что только ситуации равновесия могут быть предметом предварительных договоров, которые будут соблюдаться. (Если в договоре зафиксирована неравновесная ситуация, то хо­тя бы один из игроков будет заинтересован в нарушении дого­вора и ситуация фактически не будет достигнута.)

В случае антагонистического конфликта принцип осущест­вимости цели превращается в принцип максимина, а ситуации равновесия становятся седловыми точками.

Принцип осуществимости цели, подобно принципам опти­мальности в нестратегических конфликтах, страдает неполнотой: соответствующие ему решения конфликта (т.е. ситуации равно­весия) для многих игр не существуют; вместе с тем многие игры имеют и более одного решения. Отсутствие у конфликта реше­ний достаточно успешно преодолевается введением так назы­ваемых «смешанных стратегий», преодоление же множественно­сти решений является важной и нерешенной пока проблемой.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: