Многомерные случайные величины

В главе рассматриваются:

- понятие многомерной случайной величины и ее закон распределения;

- функция распределения многомерной случайной величины;

- плотность вероятности двумерной случайной величины;

- ковариация и коэффициент корреляции.

Типовые задачи

Пример 5.1

Закон распределения дискретной двумерной случайной величины (Х, Y) задан в табл. 5.2.

Таблица 5.2

yi xi -1      
  0,10 0,25 0,30 0,15
  0,10 0,05 0,00 0,05

Найти:

а) законы распределения одномерных случайных величин X и Y;

б) условные законы распределения случайной величины X при условии Y = 2 и случайной величины Y при условии X = 1;

в) вычислить P(

Y<

X).

Решение

а) Случайная величина X может принимать значения:

Х = 1 с вероятностью P1 = 0,10 + 0,25 + 0,30 + 0,15 = 0,8;

X = 2 с вероятностью P2

=

0, 10 + 0,05 + 0,00 + 0,05 = 0,2,

т.е. ее закон распределения

X: xi    
pi 0,8 0,2

Аналогично закон распределения

Y: yj -1      
pj 0,2 0,3 0,3 0,2

б) Условный закон распределения Х при условии, что Y = 2. получим, если вероятность pij

, стоящие в последнем столбце табл.5.2, разделим на их сумму, т.е. p (Y = 2) = 0,2. Получим

Х Y=2 : х i    
pj (х i) 0,75 0,25

Аналогично для получения условного закона распределения Y при условии Х = 1 вероятности pij, стоящие в первой строке табл. 5.2, делим на их сумму, т.е. на p (X = 1) = 0,8. Получим

YХ=1 : yj -1      
pi (yj) 0,125 0,3125 0,375 0,1875

в) Для нахождения вероятностей Р (Y < Х) складываем вероятности событий pij из табл. 5.2, для которых yj < х

i.

Получим

Р (Y < Х) = 0,10 + 0,25 + 0,10 + 0,05 + 0,00 = 0,5

Пример 5.2

Двумерная случайная величина распределена равномерно в круге радиуса R = 1 (рис. 5.5). Определить:

а) выражение совместной плотности и функции распределения двумерной случайной величины (

X, У);

б) плотности вероятности и функции распределения одномерных составляющих X и Y;

в) вероятность того, что расстояние от точки (

X,

Y) до начала координат будет меньше 1/3.

Решение

а) По условию

Постоянную С можно найти из соотношения (5.18):

Проще это сделать, исходя из геометрического смысла соотношения (5.18), означающего, что объем тела, ограниченного поверхностью распределения φ (х, у) и плоскостью Оху, равен 1.

В данном случае, это объем цилиндра с площадью основания πR2 = π*12 = π и высотой С (рис. 5.6), равный п*С = 1, откуда С = 1/π. Следовательно,

Найдем функцию распределения F (x, y) по формуле (5.17):

(5.21)

Очевидно, что этот интеграл с точностью до множителя 1/π совпадает с площадью области D – области пересечения круга с бесконечным квадрантом левее и ниже точки M (x, y) (рис.5.7).

Опустим расчеты интеграла (5.21) для различных х и у,но отметим очевидное, что

при x ≤ -1, -∞ < y < ∞ или при -∞ < х < ∞, у < - 1 F(

x,

y) = 0,

так как в этом случае область D – пустая, а при x >1, у > 1 F (х,у) = 1, так как при этом область D полностью совпадает с кругом х2 + у2 < 1, на котором совместная плотность φ(х,у) отлична от нуля.

б) Найдем функции распределения одномерных составляющих X и

Y. По формуле (5.19) при -1< х < 1

Итак,

Аналогично

Найдем плотности вероятности одномерных составляющих Х и Y. По формуле:

График плотности φ1 (х) показан на рис. 5.8.

Аналогично

в) Искомую вероятность , т.е. вероятность того. Что случайная точка (X,Y) будет находится в круге радиуса R1 = 1/3 (см. рис. 5.5), можно было найти по формуле:

,

но проще это сделать, используя понятие «геометрической вероятности», т.е.

Пример 5.3

По данным примера 5.3 определить:

а) условные плотности случайных величин X и У;

б) зависимы или независимы случайные величины X и Y;

в) условные математические ожидания и условные дисперсии.

Решение

а) Найдем условную плотность φ

y (x) по формуле (5.22), учитывая, что φ2 (y) ≠ 0.

График φ

y (x) при y = 1/2 показан на рис. 5.11.

Аналогично

б) X и Y – независимые случайные величины, так как φ (x, y) ≠

φ1 (x) φ2 (y) или φy (x) ≠ φ1 (x), φх (y) ≠ φ2 (y).

в) Найдем условное математическое ожидание Mx (Y), учитывая, что .

Аналогично

Этот результат очевиден в силу того, что круг x2 + y2 ≤ 1 (рис.5.5) симметричен относительно координатных осей. Таким образом, линия регрессии Y по

X совпадает с осью Ох (Мх (Y) = 0), а линия регрессии X по Y – с осью Оу (Му (Х) = 0).

Найдем условную дисперсию Dx (Y):

(Тот же результат можно получить проще – по формуле дисперсии равномерного закона распределения:

)

Аналогично

Таким образом, по мере удаления от начала координат дисперсия условных распределений уменьшается от 1/3 до 0.

Пример 5.4

По данным примера 5.2 определить ковариацию и коэффициент корреляции случайных величин Х и

Y.

Решение

В примере 5.2 были получены следующие законы распределения одномерных случайных величин:

X: xi    
pi 0,8 0,2

и

Y: yj -1      
pj 0,2 0,3 0,3 0,2

Найдем математические ожидания и средние квадратические отклонения этих случайных величин:

,

,

Для нахождения математического ожидания M(

XY) произведения случайных величин X и Y можно было составить закон распределения произведения двух дискретных случайных величин (с вероятностями его значений из табл. 5.2), а затем по нему найти M(

XY)

Закон распределения (XY) имеет вид:

(х y) k -2 -1        
pk 0,1 0,1 0,3 0,3 0,15 0,05

Но делать это вовсе не обязательно. M(

XY) Можно найти непосредственно по табл. 5.2 распределения двумерной случайной величины (

X,

Y) по формуле:

,

где двойная сумма означает суммирование по всем nm клеткам таблицы (n – число строк, m – число столбцов):

Вычислим ковариацию Kxy по формуле:

Kxy = axay = 0,5-1,2*0,5 = -0,1.

Вычислим коэффициент корреляции ρ по формуле:

т.е. между случайными величинами X и Y существует отрицательная линейная зависимость; следовательно, при увеличении (уменьшении) одной из случайных величин другая имеет некоторую тенденцию уменьшаться (увеличиваться).

Пример 5.5

По данным примера 5.3 определить:

а) ковариацию и коэффициент корреляции случайных величин X и Y;

б) коррелированы или некоррелированы эти случайные величины.

Решение

а) Вначале найдем математические ожидания ах= М{Х) и ay=

M(

Y) по формулам:

Аналогично ау = 0 (то, что ах = ау = 0, очевидно из соображения симметрии распределения в круге, из которой следует, что центр его массы лежит в начале координат).

По формуле (5.34) ковариация:

Соответственно коэффициент корреляции .

б) Так как р = 0, то случайные величины X и

Y некоррелированы. Убеждаемся в том, что из некоррелированности величин еще не вытекает их независимость.

Пример 5.6

Найти плотность вероятности случайной величины Y = 1- X 3, где случайная величина X распределена по закону Коши с плотностью вероятности

.

Решение

По условию y = f (x) = 1- x 3, откуда . Производная (по абсолютной величине):

.

Плотность вероятности:

Пример 5.7

Найти математическое ожидание и дисперсию случайной величины Y = 2-3 sinX, если плотность вероятности случайной величины X есть φ (х) = cosX на отрезке [-π/2, π/2].

Решение

По формуле (5.57)

Дисперсия D(Y) = M(Y2) – :

.

Пример 5.8

Найти закон распределения суммы двух случайных величин, распределенных равномерно на отрезке [0; 1].

Решение

Пусть Z =

X+

Y, где φ1 (x)= 1 при 0 ≤ х1 и

φ2(у) = 1 при 0 ≤ у ≤1.

По формуле (5.49) плотность вероятности:

Если z < 0, то для 0 ≤ x ≤ 1 z - x < 0; если z > 2, то для 0 ≤ x ≤ 1 z - x > 1, следовательно, в этих случаях φ2 (z - x) = 0 и φ (z) = 0.

Пусть 0 ≤ z ≤ 2. Подынтегральная функция φ2 (z - x) будет отлична от нуля только для значений х, при которых 0 ≤ z -

x ≤ 1 или, что то же самое, при z -1 ≤ xz.

Если 0 ≤ z ≤ 1, то .

Если 1 ≤ z ≤ 2, то .

Объединяя все случаи, получим:

(5.60)

Закон распределения (5.60) называется законом распределения Симпсона или законом равнобедренного треугольника (рис. 5.16).

Вычисление φ(z) можно было провести и иначе: вначале найти функцию распределения F(

z), а затем – ее производную, т.е. φ(z) = F' (z). Преимущество такого подхода состоит в возможности использования геометрической интерпретации функции F (z) как площади SD области D – части квадрата (со стороной, равной 1), лежащей левее и ниже прямой у = z - х (рис. 5.17).

Действительно (см. рис. 5.17), при 0 ≤ z ≤1 SD = z2/2 (площадь заштрихованного треугольника со стороной z), а при 1 ≤ z ≤ 2 SD = 1 - (2 - z)2/2 (площадь квадрата без площади незаштрихованного треугольника, сторона которого, как нетрудно показать, равна (2 – z). Следовательно,

и выражение (5.60) для φ(

z) получается дифференцированием F(z).

Задания

5.1. Закон распределения двумерной дискретной случайной величины (

X,

Y) задан в табл. 5.3.

Таблица 5.3

yi xi        
-1 0,02 0,03 0,09 0,01
  0,04 0,20 0,16 0,10
  0,05 0,10 0,15 0,05

Найти:

а) законы распределения одномерных случайных величин Х и

Y;

б) условные законы распределения случайной величины X при условии Y = 2 и случайной величины Y при условии Х = 1;

в) вероятность P(Y > X).

5.2. Рассматривается двумерная случайная величина (

X,

Y), где X – поставка сырья, Y – поступление требования на него. Известно, что поступление сырья и поступление требования на него могут произойти в любой день месяца (30 дней) с равной вероятностью. Определить:

а) выражение совместной плотности и функции распределения двумерной случайной величины (Х,У),

б) плотности вероятности и функции распределения одномерных составляющих X и Y;

в) зависимы или независимы X и Y;

г) вероятности того, что поставка сырья произойдет до и после поступления требования.

5.3. Двумерная случайная величина (

X,

Y) распределена равномерно внутри квадрата R с центром в начале координат. Стороны квадрата равны корень2и составляют углы 45° с осями координат. Определить:

а) выражение совместной плотности двумерной случайной величины (

X,

Y);

б) плотности вероятности одномерных составляющих X и Y;

в) их условные плотности;

г) зависимыили независимы Х и

Y.

5.4. Даны плотности вероятности независимых составляющих двумерной случайной величины (

X,

Y):

Найти выражение совместной плотности и функции распределения двумерной случайной величины.

В примерах 5.14–5.16 определить:

а) ковариацию и коэффициент корреляции случайных величин X и Y,

б) коррелированы или некоррелированы эти случайные величины.

5.5. Использовать данные примера 5.10.

5.6. Использовать данные примера 5.11.

5.7. Использовать данные примера 5.12.

5.8. Случайная величина X распределена на всей числовой оси с плотностью вероятности φ (х) = 0,5е-│Х│. Найти плотность вероятности случайной величины Y =

X2 и ее математическое ожидание.

5.9. Найти закон распределения суммы двух независимых случайных величин, каждая из которых распределена по стандартному нормальному закону, т.е. N (0,1).

5.10. Двумерная случайная величина определяется следующим образом. Если при подбрасывании игральной кости выпадает четное число очков, то Х = 1, в противном случае X = 0;

Y = 1, когда число очков кратно трем, в противном случае Y=0. Найти:

а) законы распределения двумерной случайной величины (

X,

Y) и ее одномерных составляющих;

б) условные законы распределения Х и

Y.

5.11. Двумерная случайная величина (

X,

Y) распределена с постоянной совместной плотностью внутри квадрата ОАВС, где O(0;0), A(0;1), B(1;1), С(1;0). Найти выражение совместной плотности и функции распределения двумерной случайной величины (

X,

Y).

5.12. Поверхность распределения двумерной случайной величины (

X,

Y) представляет прямой круговой конус, основанием которого служит круг с центром в начале координат и с радиусом 1. Вне этого круга совместная плотность двумерной случайной величины (

X,

Y) равна нулю. Найти выражения совместной плотности φ (х, у), плотностей вероятностей одномерных составляющих φ1 (x), φ2 (y), условных плотностей φ

x (y),

φ

y (x). Выяснить, являются ли случайные величины X и Y. зависимыми; коррелированными.

5.13. Двумерная случайная величина (

X,

Y) распределена по закону

Найти:

а) коэффициент А;

б) вероятность попадания случайной величины (

X,

Y) в пределы квадрата, центр которого совпадает с началом координат, а стороны параллельны осям координат и имеют длину 2.

Установить, являются ли величины X и Y зависимыми; найти φ1 (х),

φ2(

y).

5.14. Совместная плотность двумерной случайной величины (

X, У) имеет вид

Найти:

а) постоянную С;

б) плотности вероятности одномерных составляющих;

в) их условные плотности;

г) числовые характеристики ах, ау,

D(Х),

D(

Y), ρ.

5.15. Найти совместную плотность двумерной случайной величины (

X,

Y) и вероятность ее попадания в область D – прямоугольник, ограниченный прямыми х = 1, х = 2, у = 3, у = 5,если известна ее функция распределения (

X,

Y):

5.16. Задана совместная плотность двумерной случайной величины (X,

Y):

.

Найти функцию распределения F (x, y).

5.17. Имеются независимые случайные величины X и Y. Случайная величина X распределена по нормальному закону с параметрами ах = 0, . Случайная величина Y распределена равномерно на интервале (0;1). Найти выражения совместной плотности и функции распределения двумерной случайной величины (X,

Y).

5.18. Совместная плотность двумерной случайной величины (X,

Y) задана формулой:

Найти ax, ay, , , ρ.

5.19. Независимые случайные величины X,

Y распределены по нормальным законам с параметрами ax = 2, ay = -3, = 1, = 4. Найти вероятности событий:

а) (X < ax)(Y < ay);

б) Y < X -5;

в)(│ X │< 1)(│ Y │< 2).

5.20. Задана плотность вероятности φ (х) случайной величины Х, принимающей только положительные значения. Найти плотность вероятности случайной величины Y, если:

а) Y = e-

x;

б) Y = ln X;

в) Y = X 3;

г) Y = 1/ X 2;

д) Y = .

5.21. Случайная величина Х равномерно распределена в интервале (-π/2; π/2). Найти плотность вероятности случайной величины Y = sin X.

5.22. Случайная величина распределена по закону Релея с плотностью вероятности

Найти закон распределения случайной величины Y = .

5.23. Случайная величина Х распределена по закону Коши с плотностью вероятности

.

Найти плотность вероятности обратной величины Y = 1/ X.

5.24. Дискретная случайная величина Х имеет ряд распределения

xi -1      
pi 0,2 0,1 0,3 0,4

Найти математическое ожидание и дисперсию случайной величины

Y= 2х

5.25. Имеются две случайные величины X и Y, связанные соотношением Y = 2 – ЗХ. Числовые характеристики случайной величины X заданы ах= -1; D(

X) = 4. Найти:

а) математическое ожидание и дисперсию случайной величины Y;

б) ковариацию и коэффициент корреляции случайной величин Х и

Y.

5.26. Случайная величина X задана плотностью вероятности φ(x) = cosx в интервале (0, π/2); вне этого интервала φ(x) = 0. Найти математическое ожидание случайной величины Y=

X2.

5.27. Случайная величина X распределена с постоянной плотностью вероятности в интервале (1;2) и нулевой плотностью вне этого интервала. Найти математическое ожидание и дисперсию случайной величины Y = 1 /x

5.28. Непрерывная случайная величина X распределена в интервале (0;1) по закону с плотностью вероятности

Найти математическое ожидание и дисперсию случайной величины Y=

X2.

5.29. Непрерывная случайная величина распределена по показательному закону с параметром Х = 2. Найти математическое ожидание и дисперсию случайной величины Y=

e-

X.

5.30. Случайная величина X распределена по нормальному закону с параметрами а = 0, σ 2 = 5. Найти математическое ожидание случайной величины Y =1 - ЗХ2 + 4Х3.

5.31. Имеются две независимые случайные величины X и

Y. Величина X распределена по нормальному закону с параметрами ах= 1, = 4. Величина Yраспределена равномерно в интервале (0;2). Найти:

а) М(Х - У),

D(Х -

Y);

б) M(

X2),

M(

Y2).


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: