Источники инфракрасного излучения

В производственных условиях выделение тепла возможно от:

плавильных, нагревательных печей и других термических устройств;

остывания нагретых или расплавленных металлов;

перехода в тепло механической энергии, затрачиваемой на привод основного технологического оборудования;

перехода электрической энергии в тепловую и т.п.

46. Защитные меры от неблагополучного действия инфракрасного облучения.

Способы защиты от инфракрасного излучения — теплоизоляция горячих поверхностей; охлаждение теплоизлучагощих поверхностей; экранирование источников излучения; применение воздушного душировання; организация рационального режима труда и отдыха.
Тепловая изоляция является эффективным и самым экономичным средством не только по уменьшению интенсивности инфракрасного излучения от нагретых поверхностей (печей, сосудов, трубопроводов и др.), но и общих тепловыделений, а также по предо! вращению ожогов при прикосновении к этим поверхностям и сокращению расхода топлива. По СНип 4088—86. «Санитарные нормы микроклимата производственных помещений» температура на поверхности оборудования должна быть более 45°С.

47. Роль ультрафиолетовых лучей в жизнедеятельности человека. Опасность ультрафиолетовой недостаточности.

Влияние ультрафиолетовых лучей на организм человека.
Ультрафиолетовые лучи обладают значительной биологической активностью, они оказывают положительное и отрицательное влияние на организм человека.
1.1 Положительное влияние ультрафиолетовых лучей на организм человека
Малые дозы ультрафиолетового излучения оказывают благотворное действие на человека и животных.
Солнечный свет - мощное лечебное и профилактическое средство, исключительно важное для сохранения здоровья. Недаром старая пословица гласит: "Куда редко заглядывает солнце, туда часто приходит врач". Действие волшебных ультрафиолетовых лучей на организм неодинаково и зависит от длины волны. Одни из них оказывают витаминобразующее действие - способствуют образованию в коже витамина D, другие оказывают так называемое эритемное и пигментное действие, т. е. вызывают на коже образование эритемы (покраснение) и пигмента, обусловливающего загар. Наиболее короткие ультрафиолетовые лучи оказывают бактерицидное, убивающее микробы действие. Датский физиотерапевт Н. Финзен в 1903 г. использовал солнечные лучи для лечения туберкулеза кожи. За эти исследования ему была присуждена Нобелевская премия. Солнечный свет обладает поистине изумительной целебной силой. Его лучи, прежде всего, ультрафиолетовые, действуют на нервно-рецепторный аппарат кожи и вызывают в организме сложные химические превращения.

Под влиянием облучений повышается тонус центральной нервной системы, улучшается обмен веществ и состав крови, активизируется деятельность желез внутренней секреции. Ультрафиолетовые лучи способны не только предупреждать, но и излечивать некоторые болезни: рахит, псориаз, экзема, желтуха.

При ультрафиолетовой недостаточности снижается сопротивляемость организма к инфекционным заболеваниям, в частности к гриппу; нарушается, а иногда и полностью прекращается процесс образования в коже витамина D из провитамина, входящего в состав секрета сальных желез, вследствие чего нарушается фосфорно-кальциевый обмен, у детей развивается рахит; отмечается предрасположение к кариесу зубов; длительное, отсутствие ультрафиолетовой радиации нарушает защитную функцию кожи, что создает условия для развитияпиодермии и дерматитов; появляется повышенная чувствительность к влиянию резких климато-погодных колебаний, значительно снижается работоспособность.
Ультрафиолетовая недостаточность наблюдается у шахтеров, среди населения в северных широтах, в больших городах, при длительном пребывании в помещении, так как оконное стекло задерживает ультрафиолетовые лучи. Особенно чувствительны к недостатку ультрафиолетового излучения в осенне-зимнее время ослабленные, часто болеющие дети и реконвалесценты. В целях предупреждения ультрафиолетовой недостаточности устраивают солярии, а в зимнее время фотарии(см.), которые организуются в лечебно-профилактических учреждениях (в больницах, санаториях, домах отдыха, детских оздоровительных учреждениях), и при некоторых производствах.
Для профилактики ультрафиолетовой недостаточности, помимо солнцелечения (см.Гелиотерапия), большую роль играет применение искусственных источников излучения: ртутно-кварцевых или эритемных увиолевых ламп (см. Облучатели ультрафиолетовые).
В облучательных установках длительного действия обычное искусственное освещение обогащается ультрафиолетовым излучением при помощи специальных эритемных увиолевых ламп. Люди во время пребывания в учебном или производственном помещении подвергаются ультрафиолетовому облучению небольшой интенсивности.

48. Опасность переоблучения ультрафиолетовыми лучами.

Длительное и интенсивное ультрафиолетовое облучение может оказать неблагоприятное влияние на организм и вызвать патологические изменения. При значительном облучении отмечаются быстрая утомляемость, головные боли, сонливость, ухудшение памяти, раздражительность, сердцебиение, понижение аппетита. Чрезмерное облучение может вызвать гиперкальциемию, гемолиз, задержку роста и понижение сопротивляемости инфекциям. При сильном облучении развиваются ожоги и дерматиты (жжение и зуд кожи, диффузная эритема, отечность). При этом отмечается повышение температуры тела, головная боль, разбитость. Ожоги и дерматиты, возникающие под воздействием солнечной радиации, связаны преимущественно с влиянием ультрафиолетовых лучей. У работающих на открытом воздухе под влиянием солнечной радиации могут возникнуть длительно и тяжело протекающие дерматиты. Необходимо помнить о возможности перехода описываемых дерматитов в рак.

В зависимости от глубины проникновения лучей различных участков солнечного спектра могут развиться изменения глаз. Под влиянием инфракрасных и видимых лучей возникает острый ретинит. Хорошо известна так называемая катаракта стеклодувов, развивающаяся в результате длительного поглощения инфракрасных лучей хрусталиком. Помутнение хрусталика происходит медленно, главным образом у рабочих горячих цехов со стажем работы 20-25 лет и больше. В настоящее время профессиональные катаракты в горячих цехах встречаются редко вследствие значительного улучшения условий труда. Роговица и конъюнктива реагируют главным образом на ультрафиолетовые лучи. Эти лучи (особенно с длиной волны менее 320 mμ.) вызывают в ряде случаев заболевание глаз, известное под названием фотоофтальмии или электроофтальмии. Это заболевание наиболее часто встречается у электросварщиков. В таких случаях часто наблюдается острый кератоконъюнктивит, который обычно возникает через 6-8 часов после работы, нередко ночью.

При электроофтальмии отмечается гиперемия и припухание слизистой, блефароспазм, светобоязнь, слезотечение. Часто обнаруживается поражение роговицы. Продолжительность острого периода болезни 1-2 дня. У работающих на открытом воздухе при ярком солнечном освещении широких покрытых снегом пространств фотоофтальмия протекает иногда в виде так называемой снежной слепоты. Лечение фотоофтальмии заключается в пребывании в темноте, применении новокаина и холодных примочек.

49. Особенности действия на организм отдельных участков спектра ультрафиолетового излучения.

50. Нормы ультрафиолетового облучения.

1.1. Настоящие Нормы устанавливают допустимые величины ультрафиолетового излучения на постоянных и непостоянных рабочих местах (облученность) от производственных источников с учетом спектрального состава излучения для областей:

длинноволновой - 400 – 315 нм - УФ-А

средневолновой - 315 – 280 нм - УФ-В

коротковолновой - 280 – 200 нм - УФ-С

и содержат требования к методам контроля и оценки.

1.2. Нормативы распространяются на излучение, создаваемое источниками, имеющими температуру выше 2000°С (электрические дуги, плазма, расплавленный металл, кварцевое стекло и т.п.), люминесцентными источниками, используемыми в полиграфии, химическом и деревообрабатывающем производстве, сельском хозяйстве, при кино- и телесъемках, дефектоскопии и других отраслях производства, а также в здравоохранении.

1.3. Нормативы не распространяются на ультрафиолетовое излучение, генерируемое лазерами, используемое для обеззараживания сред при отсутствии обслуживающего персонала, а также применяемое в лечебных и профилактических целях.

1.4. Нормативы интенсивности излучения установлены с учетом продолжительности воздействия на работающих, обязательного ношения спецодежды, защищающей от излучения, головных уборов и использования средств защиты глаз (ГОСТ 12.4.080-79 "ССБТ. Светофильтры стеклянные для защиты глаз от вредных излучений на производстве").

51. Средства защиты от переоблучения ультрафиолетовыми лучами.

Для защиты глаз от неблагоприятного действия ультрафиолетовых лучей на производствах пользуются щитками или шлемами со специальными темными стеклами, защитными очками, а для защиты остальных частей тела и окружающих лиц - изолирующими ширмами, переносными экранами, спецодеждой.

В бытовых условиях рекомендуется использование солнцезащитных кремов, лосьонов, спреев с высоким фактором защиты, ношение солнцезащитных очков и закрытой одежды из натуральных тканей.

52. Средства компенсации ультрафиолетовой недостаточности.

-лампа

-солярий

-загар

53. Электромагнитное поле токов промышленной частоты. Методы обеспечения безопасности. Опасность условий труда при воздействии постоянного магнитного поля.

Электромагнитные поля промышленной частоты
Сейчас, пожалуй очень многие люди покупающие коттедж или живущие в собственном доме сталкиваются с этой проблемой- нахождение вблизи их загородного дома (а зачастую, и квартиры) проводов ЛЭП. Проблема осложнена тем, что в отличии от более маленьких источников электромагнитного поля ЛЭП передвинуть, либо добиться их удаления практически невозможно и приходиться мириться с их присутствием.
Дети, беременные женщины, люди с заболеваниями центральной нервной, гормональной, сердечно-сосудистой систем, с ослабленным иммунитетом, аллергики в первую очередь страдают от воздействия электромагнитных полей, мощным источником которых является ЛЭП. Исследования многих ученых говорят о прямой взаимосвязи воздействия электромагнитных полей и развития онкологических заболеваний.
Дальность распространения опасного магнитного поля от ЛЭП напрямую зависит от ее мощности. Даже при беглом взгляде на висящие провода можно примерно установить ее класс напряжения. Определяется это по числу проводов (но не на опоре, а в фазе- т.е. в «связке»):
- 750 кВ - 4 провода.
- 500 кВ - 3 провода,
- 330 кВ - 2 провода,
- Ниже 330 кВ - 1 провод на фазу. Точно определить класс можно только приблизительно по числу изоляторов в гирлянде: 220 кВ 10 -15 шт., 110 кВ 6-8 шт., 35 кВ 3-5 шт., 10 кВ и ниже - 1 шт.
Исходя из мощности ЛЭП, для защиты населения от действия электромагнитного поля установлены санитарно-защитные зоны для линий электропередачи. СН № 2971-84 "Защита населения от воздействия электрического поля, создаваемого воздушными линиями электропередачи переменного тока промышленной частоты». Санитарно-защитная зона установлена с проекции крайнего провода.
Напряжение ЛЭП - Размер санитарно-защитной зоны
<20 кВ - 10 м
35 кВ - 15 м
110 кВ - 20 м
150-220 кВ - 25 м
330-500 кВ - 30 м
750 кВ - 40 м
(примечание- в таблице приведены «жесткие нормы»)
Ориентируясь на эти санитарно защитные зоны и выделяют участки под застройку.
Однако стоит учитывать, что вышеуказанные санитарные нормы создавались с учетом электрической составляющей электромагнитного поля, без учета влияния магнитного поля. Несмотря на то, что магнитное поле во всем мире сейчас считается наиболее опасным для здоровья, предельно допустимая величина магнитного поля для населения в России не нормируется. Поэтому большая часть ЛЭП строилась без учета этой опасности.

54. Опасность воздействия аномальных уровней геомагнитного поля земли. Методы защиты.

Наукой уже давно доказано, что магнитное поле Земли влияет на людей и животных, причем, каждый атом живых существ не только реагирует на электромагнитные потоки, но и генерирует собственные. Биофизики и врачи, изучающие физиологические процессы, происходящие под влиянием магнитного поля в организме человека, прежде всего, отмечают важное влияние магнитного поля на систему кровообращения, состояние кровеносных сосудов, активность переноса кислорода через кровь к окружающим тканям, транспортировку питательных веществ через полупроницаемые мембраны клеток. Резкое изменение внешнего магнитного поля, например, при магнитной буре или активной геомагнитной зоне всегда отрицательно сказывается на самочувствии и здоровье.

http://snipov.net/c_4655_snip_115824.html#i93995

55. Последствия воздействия ионизирующих излучений на организм человека при внешнем и внутреннем облучении, загрязнении поверхности радиоактивными веществами.

Ионизация, создаваемая излучением в клетках, приводит к образованию свободных радикалов. Свободные радикалы вызывают разрушения целостности цепочек макромолекул (белков и нуклеиновых кислот), что может привести как к массовой гибели клеток, так и канцерогенезу и мутагенезу. Наиболее подвержены воздействию ионизирующего излучения активно делящиеся (эпителиальные, стволовые, также эмбриональные) клетки.
Из-за того, что разные типы ионизирующего излучения обладают разной ЛПЭ, одной и той же поглощённой дозе соответствует разная биологическая эффективность излучения. Поэтому для описания воздействия излучения на живые организмы вводят понятия относительной биологической эффективности (коэффициента качества) излучения по отношению к излучению с низкой ЛПЭ (коэффициент качества фотонного и электронного излучения принимают за единицу) и эквивалентной дозы ионизирующего излучения, численно равной произведению поглощённой дозы на коэффициент качества.
После действия излучения на организм в зависимости от дозы могут возникнуть детерминированные и стохастические радиобиологические эффекты. Например, порог появления симптомов острой лучевой болезни у человека составляет 1-2 Зв на всё тело. В отличие от детерминированных, стохастические эффекты не имеют чёткого дозового порога проявления. С увеличением дозы облучения возрастает лишь частота проявления этих эффектов. Проявиться они могут как спустя много лет после облучения (злокачественные новообразования), так и в последующих поколениях (мутации)

Различают два вида эффекта воздействия на организм ионизирующих излучений:
• Соматический (При соматическом эффекте последствия проявляются непосредственно у облучаемого)

• Генетический (При генетическом эффекте последствия проявляются непосредственно у его потомства)

Соматические эффекты могут быть ранними или отдалёнными. Ранние возникают в период от нескольких минут до 30-60 суток после облучения. К ним относят покраснение и шелушение кожи, помутнение хрусталика глаза, поражение кроветворной системы, лучевая болезнь, летальный исход. Отдалённые соматические эффекты проявляются через несколько месяцев или лет после облучения в виде стойких изменений кожи, злокачественных новообразований, снижения иммунитета, сокращения продолжительности жизни.

При изучении действия излучения на организм были выявлены следующие особенности:
• Высокая эффективность поглощённой энергии, даже малые её количества могут вызвать глубокие биологические изменения в организме.
• Наличие скрытого (инкубационного) периода проявления действия ионизирующих излучений.
• Действие от малых доз может суммироваться или накапливаться.
• Генетический эффект - воздействие на потомство.
• Различные органы живого организма имеют свою чувствительность к облучению.
• Не каждый организм (человек) в целом одинаково реагирует на облучение.
• Облучение зависит от частоты воздействия. При одной и той же дозе облучения вредные последствия будут тем меньше, чем более дробно оно получено во времени.

Ионизирующее излучение может оказывать влияние на организм как при внешнем (особенно рентгеновское и гамма-излучение), так и при внутреннем (особенно альфа-частицы) облучении. Внутреннее облучение происходит при попадании внутрь организма через лёгкие, кожу и органы пищеварения источников ионизирующего излучения. Внутреннее облучение более опасно, чем внешнее, так как попавшие внутрь ИИИ подвергают непрерывному облучению ничем не защищённые внутренние органы.

Под действием ионизирующего излучения вода, являющаяся составной частью организма человека, расщепляется и образуются ионы с разными зарядами. Полученные свободные радикалы и окислители взаимодействуют с молекулами органического вещества ткани, окисляя и разрушая её. Нарушается обмен веществ. Происходят изменения в составе крови - снижается уровень эритроцитов, лейкоцитов, тромбоцитов и нейтрофилов. Поражение органов кроветворения разрушает иммунную систему человека и приводит к инфекционным осложнениям.
Местные поражения характеризуются лучевыми ожогами кожи и слизистых оболочек. При сильных ожогах образуются отёки, пузыри, возможно отмирание тканей (некрозы).
Смертельные поглощённые дозы для отдельных частей тела следующие:
o голова - 20 Гр;
o нижняя часть живота - 50 Гр;
o грудная клетка -100 Гр;
o конечности - 200 Гр.
При облучении дозами, в 100-1000 раз превышающую смертельную дозу, человек может погибнуть во время облучения ("смерть под лучом").
Биологические нарушения в зависимости от суммарной поглощённой дозы излучения представлены в табл. №1 «Биологические нарушения при однократном (до 4-х суток) облучении всего тела человека»

Доза облучения, (Гр) Степень лучевой болезни Начало проявле-
ния первичной реакции Характер первичной реакции Последствия облучения
До 0,250,25 - 0,50,5 - 1,0 Видимых нарушений нет.
Возможны изменения в крови.
Изменения в крови, трудоспособность нарушена
1 - 2 Лёгкая (1) Через 2-3 ч Несильная тошнота с рвотой. Проходит в день облучения Как правило, 100% -ное выздоров-
ление даже при отсутствии лечения
2 - 4 Средняя (2) Через 1-2 ч
Длится 1 сутки Рвота, слабость, недомогание Выздоровление у 100% пострадавших при условии лечения
4 - 6 Тяжёлая (3) Через 20-40 мин. Многократная рвота, сильное недомогание, температура -до 38 Выздоровление у 50-80% пострадавших при условии спец. лечения
Более 6 Крайне тяжёлая (4) Через 20-30 мин. Эритема кожи и слизистых, жидкий стул, температура -выше 38 Выздоровление у 30-50% пострадавших при условии спец. лечения
6-10 Переходная форма (исход непредсказуем)
Более 10 Встречается крайне редко (100%-ный смертельный исход)
Табл. №1
В России, на основе рекомендаций Международной комиссии по радиационной защите, применяется метод защиты населения нормированием. Разработанные нормы радиационной безопасности учитывают три категории облучаемых лиц:
• А - персонал, т.е. лица, постоянно или временно работающие с источниками ионизирующего излучения
• Б - ограниченная часть населения, т.е. лица, непосредственно не занятые на работе с источниками ионизирующих излучений, но по условиям проживания или размещения рабочих мест могущие подвергаться воздействию ионизирующих излучений;
• В - всё население.
Для категорий А и Б, с учётом радиочувствительности разных тканей и органов человека, разработаны предельно допустимые дозы облучения, показанные в табл. №2«Предельно допустимые дозы облучения»

Дозовые пределы
Группа и название критических органов человека Предельно допустимая доза для категории А за год,
бэр Предел дозы для категории Б за год,
бэр
I. Всё тело, красный костный мозг 5 0,5
II. Мышцы, щитовидная железа, печень, жировая ткань, лёгкие, селезёнка, хрусталик глаза, желудочно-кишечный тракт 15 1,5
III. Кожный покров, кисти, костная ткань, предплечья, стопы, лодыжки 30 3,0

56. Годовые предельны доз внешнего облучения.

«Нормами радиационной безопасности НРБ-69» установлены предельно допустимые дозы внешнего и внутреннего облучения и так называемые пределы дозы.
Предельно допустимая доза (ПДД) — годовой уровень облучения персонала, не вызывающий при равномерном накоплении дозы в течение 50 лет обнаруживаемых современными методами неблагоприятных изменений в состоянии здоровья самого облучаемого и его потомства. Предел дозы — допустимый среднегодовой уровень облучения отдельных лиц из населения, контролируемый по усредненным дозам внешнего излучения, радиоактивным выбросам и радиоактивной загрязненности внешней среды.
Установлены три категории облучаемых лиц: категория А—персонал (лица, которые непосредственно работают с источниками ионизирующих излучений или по роду своей работы могут подвергаться облучению), категория Б — отдельные лица из населения (контингент населения, проживающего на территории наблюдаемой зоны), категория Б — население в целом (при оценке генетически значимой дозы облучения). Среди персонала выделены две группы: а) лица, условия труда которых таковы, что дозы облучения могут превышать 0,3 годовых ПДД (работа в контролируемой зоне); б) лица, условия труда которых таковы, что дозы облучения не должны превышать 0,3 годовых ПДД (работа вне контролируемой зоны).
При установлении ПДД в пределах дозы внешнего и внутреннего облучения в НРБ-69 учитываются четыре группы критических органов. Критическим органом считается тот, облучение которого является наибольшим; степень опасности облучения зависит также от радиочувствительности облучаемых тканей и органов.
В зависимости от категории облучаемых лиц и группы критических органов установлены следующие предельно допустимые дозы и пределы доз (табл. 22).

Предельно допустимые дозы не включают естественный радиационный фон, создаваемый космическим излучением и излучениями горных пород при отсутствии посторонних искусственных источников ионизирующей радиации.
Мощность дозы, которая создается естественным фоном, на поверхности земли колеблется в пределах 0,003—0,025 мр/час (иногда и выше). При расчетах естественный фон принимается равным 0,01 мр/час.
Предельная суммарная доза для профессионального облучения рассчитывается по формуле:
Д≤5(N-18),
где Д — суммарная доза в бэр; N — возраст человека в годах; 18 — возраст в годах начала профессионального облучения. К 30 годам суммарная доза не должна быть больше 60 бэр.
В исключительных случаях разрешается облучение, приводящее к превышению годовой предельно допустимой дозы в 2 раза в каждом конкретном случае или в 5 раз на протяжении всего периода работы. В случае аварии каждое внешнее облучение дозой 10 бэр должно быть так скомпенсировано, чтобы в последующем периоде, не превышающем 5 лет, накопленная доза не превысила величину, определяемую по указанной выше формуле. Каждое внешнее облучение дозой до 25 бэр должно быть так скомпенсировано, чтобы в последующем периоде, не превышающем 10 лет, накопленная доза не превысила величину, определенную по той же формуле.

57. Предельно-допустимые содержание и поступления радиоактивных веществ при внутреннем облучении.

http://vmedaonline.narod.ru/Chapt14/C14_412.html

58. Допустимые концентрации радионуклидов в воздухе допустимая загрязненность поврехностей рабочей зоны.

http://vmedaonline.narod.ru/Chapt14/C14_412.html

59. Работа в условиях планируемого повышенного облучения.

Планируемое повышенное облучение

3.2.1. Планируемое повышенное облучение персонала группы А выше установленных пределов доз (см. табл. 3.1.) при предотвращении развития аварии или ликвидации ее последствий может быть разрешено только в случае необходимости спасения людей и (или) предотвращения их облучения. Планируемое повышенное облучение допускается для мужчин, как правило, старше 30 лет лишь при их добровольном письменном согласии, после информирования о возможных дозах облучения и риске для здоровья.

3.2.2.. Планируемое повышенное облучение в эффективной дозе до 100 мЗв в год и эквивалентных дозах не более двукратных значений, приведенных в табл. 3.1, допускается организациями (структурными подразделениями) федеральных органов исполнительной власти, осуществляющих государственный санитарно-эпидемиологический надзор на уровне субъекта Российской Федерации, а облучение в эффективной дозе до 200 мЗв в год и четырехкратных значений эквивалентных доз по табл. 3.1 – допускается только федеральными органами исполнительной власти, уполномоченными осуществлять государственный санитарно-эпидемиологический надзор.

Повышенное облучение не допускается:

- для работников, ранее уже облученных в течение года в результате аварии или запланированного повышенного облучения с эффективной дозой 200 мЗв или с эквивалентной дозой, превышающей в четыре раза соответствующие пределы доз, приведенные в табл. 3.1;

- для лиц, имеющих медицинские противопоказания для работы с источниками излучения.

3.2.3. Лица, подвергшиеся облучению в эффективной дозе, превышающей 100 мЗв в течение года, при дальнейшей работе не должны подвергаться облучению в дозе свыше 20 мЗв за год.

Облучение эффективной дозой свыше 200 мЗв в течение года должно рассматриваться как потенциально опасное. Лица, подвергшиеся такому облучению, должны немедленно выводиться из зоны облучения и направляться на медицинское обследование. Последующая работа с источниками излучения этим лицам может быть разрешена только в индивидуальном порядке с учетом их согласия по решению компетентной медицинской комиссии.

3.2.4. Лица, не относящиеся к персоналу, привлекаемые для проведения аварийных и спасательных работ, должны быть оформлены и допущены к работам как персонал группы А.

60. Компенсация доз аварийного переоблучения.

В ряде случаев возникает необходимость проведения работ в условиях повышенной радиационной опасности (работы по ликвидации аварий, спасению людей и др.), причем заведомо невозможно принять меры, исключающие облучение.

Работы в этих условиях (планируемое повышенное облучение) могут производиться по специальному разрешению.

При планируемом повышенном облучении разрешается максимальное превышение годовой предельно допустимой дозы - ПДД (или годового предельно-допустимого поступления - ПДП) в 2 раза в каждом отдельном случае и в 5 раз на протяжении всего периода работ.

К работам в условиях планируемого повышенного облучения даже при наличии согласия работника нельзя допускать в случаях:

а) если добавление планируемой дозы к накопленной работником превышает величину Н = ПДД*Т;

б) если работник при аварии или случайном облучении ранее получал дозу, превышающую годовую в 5 раз;

в) если работник - женщина в возрасте до 40 лет.

Лица, получившие аварийное облучение, при отсутствии медицинских противопоказаний могут продолжать работу. Условия последующей работы для этих лиц должны учитывать дозу переоблучения. Годовая предельно допустимая доза для лиц, получивших аварийное облучение, должна быть пониженной на величину, компенсирующую переоблучение. Аварийное облучение дозой до 2 ПДД компенсируется в последующем периоде работы (но не более, чем в 5 лет) с таким расчетом, чтобы за это время была приведена в соответствие доза:

Нсн = ПДД*Т.

Аварийное внешнее облучение дозой до 5 ПДД аналогично компенсируется в период не более, чем в 10 лет.

Таким образом, с учетом компенсации годовая предельно допустимая доза для работника, получившего аварийное облучение, не должна превышать:

ПДДк = ПДД - Н/n = ПДД - (Нсн - ПДД*Т)/n,

где ПДДк - предельно допустимая доза с учетом компенсации, Зв/год бэр/год); Нсн - накопленная доза за время работы Т с учетом аварийной дозы, Зв (бэр);

Н-превышение накопленной дозы над допустимым значением ПДД*Т, Зв (бэр); n - время компенсации, лет.

Облучение персонал дозой 5 ПДД и выше расценивается как потенциально опасное. Лица, получившие такие дозы, обязательно проходят медицинское обследование и к дальнейшей работе с источниками ионизирующих излучений допускаются при отсутствии медицинских противопоказаний.

61. Общие принципы защиты от воздействия ионизирующих излучений.

Защита от ионизирующих излучений достигается в основном методами защиты расстоянием, экранирования и ограничения поступления радионуклидов в окружающую среду, проведением комплекса организационно-технических и лечебно-профилактических мероприятий.

Наиболее простые способы уменьшения вреда от воздействия радиации состоят либо в уменьшении времени облучения, либо в уменьшении мощности источника, либо же в удалении от него на расстояние R, обеспечивающее безопасный уровень облучения (до предела или ниже эффективной дозы). Интенсивность излучения в воздухе при удалении от источника даже без учета поглощения уменьшается по закону 1/R2.

Основными мероприятиями по защите населения от ионизирующих излучений является всемерное ограничение поступления в окружающую атмосферу, воду, почву отходов производства, содержащих радионуклиды, а также зонирование территорий вне промышленного предприятия. В случае необходимости создают санитарно-защитную зону и зону наблюдения.

Санитарно-защитная зона - территория вокруг источника ионизирующего излучения, на которой уровень облучения людей в условиях нормальной эксплуатации данного источника может превысить установленный предел дозы облучения населения.

Зона наблюдения - территория за пределами санитарно-защитной зоны, на которой возможное влияние радиоактивных выбросов учреждения и облучение проживающего населения может достигать установленного ПД и на которой проводится радиационный контроль. На территории зоны наблюдения, размеры которой, как правило, в 3...4 раза больше размеров санитарно-защитной зоны, проводится радиационный контроль.

Если же перечисленные приемы по каким-либо причинам неосуществимы или недостаточны, то следует применять материалы, эффективно ослабляющие излучение.

Защитные экраны следует выбирать в зависимости от вида ионизирующего излучения. Для защиты от α-излучения применяют экраны из стекла, плексигласа толщиной в несколько миллиметров (слой воздуха в несколько сантиметров).

В случае β-излучения используют материалы с малой атомной массой (например, алюминий), а чаще комбинированные (со стороны источника - материал с малой, а затем далее от источника - материал с большей атомной массой).

Для γ-квантов и нейтронов, проникающая способность которых значительно выше, необходима более массивная защита. Для зашиты от γ-излучений применяют материалы с большой атомной массой и высокой плотностью (свинец, вольфрам), а также более дешевые материалы и сплавы (сталь, чугун). Стационарные экраны выполняют из бетона.

Для защиты от нейтронного облучения применяют бериллий, графит и материалы, содержащие водород (парафин, вода). Широко применяют бор и его соединения для зашиты от нейтронных потоков с малой энергией.

62. Классы опасности работ при эксплуатации открытых источников ионизирующего излучения.

63. Вредное действие шума на организм человека.

64. Оценка шумовой обстановки в рабочей зоне с помощью объективных и субъективных характеристик шума.

65. Мероприятия по ограничению воздействия шума на организм человека.

66. Допустимые уровни звукового давления и эквивалентных уровней шума.

67. Действие инфразвука на организм человека. Мероприятия по защите от вредного действия инфразвука.

68. Опасность воздействия на организм человека ультразвуковых колебаний.

69. Допустимые уровни ультразвука на рабочих местах.

70. Вибрация при работе машин и механизмов и ее вредное действие на человека.

71. Нормирование и контроль уровней общей вибрации и вибрации передаваемой на руки работающих.

72. Влияние температуры, относительной влажности подвижности воздуха на жизнедеятельность и здоровье человека.

73. Опасность нарушения теплообмена организма человека с окружающей средой.

74. Нормы метеоусловий в рабочей зоне.

75. Основные способы создания благоприятных метеоусловий, отвечающих санитарно-гигиеническим требованиям.

76. Роль освещения в обеспечении здоровых и безопасных условий труда.

77. Нормы естественного освещения. Способы проверки соответствия фактических условий естественного освещения нормативным требованиям.

78. Нормы искусственного освещения.

79. Общие принципы организации рационального освещения рабочих мест.

80. Повышенное и пониженное атмосферное давление. Методы защиты при работе в условиях повышенного и пониженного атмосферного давления.

Биологические факторы.

81. Разновидности заболеваний, состояния носительства и интоксикаций, вызванные микро- и макроорганизмами.

82. Сенсибилизация микро- и макроорганизмами.

83. Методы обеспечения безопасности технологического процесса биологического профиля.

84. Методы обеспечения безопасности труда и оборудование биологических лабораторий.

85. Требования, предъявляемые к средствам защиты, используемым в биологических лабораториях, при работе с микроорганизмами различных групп патогенности.

86. Специальные профилактические мероприятия при воздействии биологических факторов.

Психо-физиологические факторы.

87. Перечень вредных факторов психо-физиологического воздействия (тяжесть и напряженность трудового процесса, эргономические параметры оборудования).

88. Методы предотвращения и профилактики воздействия психофизиологических факторов.

Сочетанное действие факторов опасного и вредного воздействия.

89. Комплекс мероприятий по нормализации условий труда при работе с вычислительной техникой.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: