Особенности процессов в дискретных системах

В дискретных системах осуществляется преобразование информации, заданной в виде дискретных процессов, квантованных по времени или по времени и уровню одновременно. Введем специальные обозначения для этих процессов. Исходные непрерывные процессы, из которых получаются дискретные, называются огибающими и обозначаются обычными символами, например x(t).

Соответствующие им дискретные процессы с квантованием по времени (рис. 1.2, а) и постоянным периодом Tn, обозначают через x(iTn), имея в виду, что i может быть любым целым числом. Чтобы получить дискретный процесс, квантованный по времени, по заданной огибающей достаточно в функции x(t) положить значение t = iTn, то есть

x(iTn) = x(t = iTn).

Дискретный процесс, квантованный по времени с постоянным периодом Tn и по уровню с постоянным шагом Δ, будем обозначать символом х(iTn) (рис. 1.2, б). Получить его по заданной функции огибающей можно по формуле

где F обозначает операцию нахождения ближайшего к значению х(iТn) числа с шагом квантования по уровню Δ. Операция F является нелинейной, поэтому цифровые системы с квантованием процессов по времени и уровню относятся к классу нелинейных. Их особенности мы будем рассматривать отдельно в дальнейшем, а сейчас остановимся на линейных дискретных системах с процессами х(iТn), квантованными по времени.

Рис. 1.3. Изображение дискретной системы Рис. 1.4. Неоднозначность дискретной функции

Работа дискретной системы сводится к преобразованию входных процессов x(iTn) в выходные у(iТn) с некоторыми заданными условиями. Схематически это отображено на рис. 1.3. По характеру желаемого преобразования дискретные системы подразделяются на те же классы, что и непрерывные, то есть на следящие, стабилизирующие, интегрирующие и др., однако возможности преобразования процессов в них имеют свои характерные особенности, которые мы и рассмотрим. Главной особенностью дискретных процессов x(iTn) является их неоднозначность. Заключается она в том, что одним и тем же дискретным процессам может соответствовать множество различных огибающих. Для примера на рис. 1.4 показаны две функции x1(t) и x2(t), которым соответствует один и тот же процесс х(iТn). Неоднозначность дискретных функций, в частности выходного процесса у(iТn) системы (рис. 1.3), может привести к неправильным выводам по результатам работы системы, поэтому предварительно должны быть изучены те условия, при которых возникающая неоднозначность была бы сведена к минимуму. Возникновение неоднозначности является следствием потери информации на интервалах между моментами квантования. Рассмотрим подробнее, как это происходит. Пусть квантованию с периодом Tn и частотой

Ω = 2π Tn

подвергается гармонический процесс х(t) = a cos ωt.

Найдем зависимость между частотой исходного процесса и частотой огибающей ω0 квантованного процесса х(iTn). Первоначально положим, что частота ω << Ω. Квантованный сигнал для этого случая показан на рис. 1.5, а. Так как в полупериод исходного процесса x(t) укладывается большое число дискретных значений x(iTn), то по ним наблюдателю легко получить значение частоты огибающей, которая будет совпадать с частотой исходного процесса. Таким образом, при малой частоте неоднозначности в ее оценке по дискретным данным не будет. Если построить зависимость ω0 от ω (рис. 1.6), то при ω << Ω она будет линейной.

Рис. 1.5. Квантование гармонического сигнала

Рис. 1.6. Стробоскопический эффект

Предельным случаем для правильной оценки частоты ω будет тот, когда на каждом полупериоде окажется одно значение x(iTn). Этот случай изображен на рис. 1.5, б, и он соответствует частоте

ω = Ω

При ω > на каждый полупериод будет приходиться меньше одного значения x(iTn), что приведет к неоднозначности в определении ω. Так, если взять ω = Ω, то частота огибающей выходного процесса, как это видно из рис. 1.5, в, будет равна ω0 = 0, это и показано на рис. 1.6.

При ω = 3Ω/2 (рис. 1.5, г) мы получим дискретный процесс, совпадающий с x(iTn) при ω = (рис. 1.5, б). Подобные рассуждения можно продолжить и показать, что оценка частоты ω исходного процесса по частоте огибающей ω0 дискретного процесса будет неоднозначной. График этой зависимости изображен на рис. 1.6. Однозначность сохраняется лишь в диапазоне

0 < ω < Ω

Описанное свойство называется стробоскопическим эффектом и является важнейшей особенностью дискретных систем. Из него следует важный для практики создания дискретных систем вывод: чтобы дискретная система была работоспособной и ее выходные данные имели однозначную интерпретацию, частоту квантования следует выбирать из условия Ω > 2ωгр, где ωгр - максимальная частота спектра входного сообщения. Впервые это условие в более широкой постановке в виде теоремы было получено в 1933 году академиком В. А. Котельниковым. Теорема Котельникова устанавливает минимальное допустимое значение частоты квантования Ω или максимальный период дискретности Tn, обеспечивающие преобразование информации без больших потерь при квантовании по времени.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: