Закон Ленца – Джоуля

При прохождении электрического тока через металлический проводник электроны сталкиваются то с нейтральными молекулами, то с молекулами, потерявшими электроны.
Движущийся электрон либо отщепляет от нейтральной молекулы новый электрон, теряя свою кинетическую энергию и образуя новый положительный ион, либо соединяется с молекулой, потерявшей электрон (с положительным ионом), образуя нейтральную молекулу.
При столкновении электронов с молекулами расходуется энергия, которая превращается в тепло.
Любое движение, при котором преодолевается сопротивление, требует эатраты определенной энергии.

Так, например, для перемещения какого -либо тела преодолевается сопротивление трения, и работа, затраченная на это, превращается в тепло.
Электрическое сопротивление проводника играет ту же роль, что и сопротивление трения.

Таким образом, для проведения тока через проводник источник тока затрачивает некоторую энергию, которая превращается в тепло.
Переход электрической энергии в тепловую отражает закон Ленца — Джоуля
или закон теплового действия тока.

Русский ученый Ленц и английский физик Джоуль одновременно и независимо один от другого установили, что при прохождении электрического тока по проводнику количество теплоты, выделяемое в проводнике, прямо пропорционально квадрату тока, сопротивлению проводника и времени, в течение которого электрический ток протекал по проводнику.

Это положение называется законом Ленца - Джоуля.
Если обозначить количество теплоты, создаваемое током, буквой Q (Дж), силу тока, протекающего по проводнику - I, сопротивление проводника - R и время, в течение которого ток протекал по проводнику - t, то закону Ленца - Джоуля можно придать следующее выражение:
Q = I Rt.
Так как I = U/R и R = U/I, то Q = (U /R) t = UIt.

НАГРЕВАНИЕ ПРОВОДНИКОВ ЭЛЕКТРИЧЕСКИМ ТОКОМ.
РАСЧЁТ СЕЧЕНИЯ ПРОВОДОВ.

На нагревании проводников электрическим током основано устройство
электрического освещения, электронагревательных приборов, электрических печей, измерительной и медицинской аппаратуры различных типов и т. д.

Из всех видов искусственного освещения наибольшее распространение получила электрическая лампа накаливания, изобретенная А. Н. Лодыгиным в 1873 г.
В такой лампе проводник под действием тока нагревается до белого каления и вследствие этого излучает свет.
Основными частями современной лампы накаливания являются нить накала и стеклянный баллон (колба).
Материалом для изготовления нити накала осветительных ламп служит вольфрам
(с примесью оксида тория и других элементов). Этот металл обладает высокой
температурой плавления (3660°) и большой механической прочностью.

Электрическое нагревание проводников не всегда оказывает полезное влияние.
В проводах линий электропередач вследствие сильного нагрева их при больших
токах может создаваться опасность возникновения пожаров.
Во избежание чрезмерного нагрева линейных проводов, а также различных
обмоток электрических машин и аппаратов из изолированной проволоки для электрической аппаратуры установлены нормы максимальных значений сил токов, пропускаемых по данному проводу или обмотке.

Ток, при котором устанавливается наибольшая допустимая температура провода, называется допустимым током. Наибольшая допустимая температура зависит от
изоляции провода и способа его прокладки.

Расчет проводов по формулам, основанным на законах нагрева, очень сложен.
На практике допустимое для данной силы тока сечение провода определяется по
таблицам допустимых длительных токовых нагрузок на провода и кабели,
приведенным в Правилах устройства электроустановок (ПУЭ).

Поперечное сечение провода, мм.кв Допустимый ток в проводах, А
Медные Аллюминиевые
0.5 1 2.5 4 6 10 25 50 11 17 30 41 50 80 140 215 - - 24 32 36 55 105 165

Провод выбирается такого сечения, чтобы допустимый ток его был равен или
больше заданного или расчетного тока.
Учтите, из ряда предпочтительных величин сечений (0,75; 1; 1,5; 2,5; 4; 6 мм? и т. д.)
для алюминиевых проводов сечение выбирают на ступень выше, чем для медных,
так как их проводимость составляет примерно 62% от проводимости медных.

Например, если по расчетам нагрузки для меди нужна величина сечения 2,5 мм?,
то для алюминия следует брать 4 мм?, если же для меди нужно 4 мм?, то для алюминия - 6 мм? и т. д.

Помимо нагрева проводов ток, проходя по ним, создает падение напряжения, так как провода обладают сопротивлением. Если расстояние между источником энергии и потребителем L, то длина двух проводов, соединяющих источник энергии с потребителем, равна 2L.

Сопротивление проводов сечением S из материала с удельным сопротивлением р равно R = р(2L/S), a падение напряжения в проводах
Uпров = IR = Ip(2L/S).
Таким образом, напряжение на зажимах потребителя Uпотр окажется меньше напряжения в начале линии (источника) Uисточ.
Разность напряжений в начале и в конце линии, равная падению напряжения в проводах, называется потерей напряжения: Uисточ - Uпотр = Uпотерь = IR.

Любой приемник энергии очень чувствителен к изменениям напряжения, т. е. отклонениям его от номинального значения.

Так, например, яркость лампы накаливания примерно пропорциональна четвертой степени напряжения, т. е. при понижении напряжения на 5% световой поток лампы накаливания уменьшается на 18,5%, а при повышении напряжения на 5% сверх номинального сокращает срок службы ее вдвое.

Колебания напряжения для осветительной нагрузки не должны превышать
—2,5 +5%, а для силовой ±5 и иногда +10% номинального значения.

Следовательно, допускаемая потеря напряжения в линии не должна превышать тех же значений.
Задача расчета сводится к выбору такого сечения провода, при котором
обеспечивается нормальное рабочее напряжение на зажимах потребителей электрической энергии, т. е. необходимое сечение проводов линии
S = 2pLI/ Uпотерь.

Найденное по этой формуле сечение, округленное до ближайшего, большего стандартного, должно быть проверено на допустимый нагрев.

Для относительно коротких линий (осветительные сети промышленных предприятий, общественных и жилых зданий) сечение проводов выбирают в зависимости от допустимого нагрева, так как потеря напряжения обычно оказывается меньше допустимой.
Мощность потерь в линии электропередачи равна:
Pпотерь = Uпотерь x I = I R.

Для защиты аппаратов, машин и приборов от чрезмерно больших токов устанавливают предохранительные устройства (предохранители, реле, автоматы), которые автоматически прерывают цепь тока, как только его величина превысит норму.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: