Дифракция Фраунгофера на дифракционной решетке

Дифракция Фраунгофера от щели. Дифракционная решетка.

 

Дифракция Фраунгофера. Дифракция Фраунгофера от бесконечно длинной щели.

Дифракция Фраунгофера — случай дифракции, при котором дифракционная картина наблюдается на значительном расстоянии от отверстия или преграды.

Дифракция Фраунгофера на одиночной щели Параллельный пучок монохроматического света падает нормально на непрозрачную преграду, (рисунок 6.4.1), в котором прорезана узкая щель ВС, имеющая постоянную ширину и длину . Условие позволяет рассматривать эту щель, как узкую щель бесконечной длины. В соответствии с принципом Гюйгенса – Френеля точки щели являются вторичными источниками волн, колеблющимися в одной фазе, так как плоскость щели совпадает с фронтом падающей волны. При дифракции Фраунгофера на одной щели для дифракционной картины на экране наблюдений имеем: условие минимума: ; условие максимума: , где Угловая ширина центрального максимума, , равна

Рисунок 6.4.1. – Установка получения дифракции Фраунгофера на одной щели.

47. Дифракция Фраунгофера на дифракционной решетке.

Дифракция Фраунгофера на дифракционной решетке

Рисунок 6.4.2. – Схема установки для дифракции Фраунгофера на дифракционной решетке.

Дифракционной решеткой называется совокупность большого числа узких одинаковых, отстоящих друг от друга на одно и то же расстояние, щелей (рисунок 6.4.2). Расстояние d между серединами соседних щелей называется периодом решетки. Период решетки равен сумме ширины щели а и расстояния между щелями b, т.е. . Решетка также характеризуется числом штрихов на единицу длины , где N – полное число штрихов в решетке, – длина решетки.

  • Условие для главных максимумов дифракционной картины от дифракционной решетки , где Между соседними главными максимумами лежат прежний минимум и добавочный минимум, где N – число щелей в решетке. Эти минимумы возникают в тех направлениях, для которых колебания от всех щелей взаимно гасят друг друга, т.к. сложение амплитуд колебаний от отдельных щелей векторное. Условия прежнего минимума . Условия для добавочных минимумов имеет вид: , где . Положение главных максимумов зависит от длины волны . Поэтому при пропускании через решетку белого света все максимумы, кроме центрального, разложатся в спектр, фиолетовый конец которого обращен к центру дифракционной картины, красный расположен дальше от центра, чем фиолетовый. Центральный максимум будет белого цвета.

48. Дифракция на пространственной решетке. Формула Вульфа-Брэггов.

Пространственной, или трехмерной, дифракционной решеткой называется такая оптически неоднородная среда, в которой неоднородности периодически повторяются при изменении всех трех пространственных координат.

Условия прохождения света через обычную дифракционную решетку периодически изменяются только в одном направлении, перпендикулярном к оси щели. Поэтому такую решетку называют одномерной.

Простейшую двумерную решетку можно получить, сложив две одномерные решетки так, чтобы их щели были взаимно перпендикулярны. Главные максимумы двумерной решетки должны одновременно удовлетворять условию максимума для каждой из решеток:

и ,

где φ - угол между направлением на главный максимум (направление луча) и нормалью к решетке; m – порядок дифракционного максимума.

Дифракционная картина представляет собой систему светлых пятен, расположенных в определенном порядке на плоскости экрана. Размеры этих пятен уменьшаются при увеличении числа щелей, а яркость возрастает. Такая же картина получается, если на одно стекло нанести ряд взаимно перпендикулярных полос.

Дифракция наблюдается также и на трехмерных структурах. Всякий монокристалл состоит из упорядоченно расположенных атомов (ионов), образующих пространственную трехмерную решетку (естественная пространственная решетка).

Период атомной решетки порядка ; длина волны света . При таких условиях никаких дифракционных явлений на атомных дифракционных решетках с видимым светом не будет. Нужно излучение с меньшей длиной волны, например рентгеновское. Для рентгеновских лучей кристаллы твердых тел являются идеальными дифракционными решетками.

В 1913 г. русский физик Г.В. Вульф и английские ученые отец и сын Генри и Лоуренс Брэгги, независимо друг от друга, предложили простой метод расчета дифракции рентгеновских лучей в кристаллах. Они полагали, что дифракцию рентгеновских лучей можно рассматривать как результат отражения рентгеновских лучей от плоскостей кристалла. Это отражение, в отличие от обычного, происходит лишь при таких условиях падения лучей на кристалл, которые соответствуют максимуму интерференции для лучей, отраженных от разных плоскостей.

Направим пучок рентгеновских лучей 1 и 2 на две соседние плоскости кристалла и (рис. 9.9).

Рис. 9.9

Абсолютный показатель преломления всех веществ для рентгеновских лучей равен 1. Поэтому оптическая разность хода между лучами и

,

где θ – угол между падающими и отраженными лучами и плоскостью кристалла (угол скольжения). Интерференционные максимумы должны удовлетворять условию Вульфа–Брэггов:

  , (m = 1, 2, 3,....). (9.5.1)  

Из формулы (9.5.1) видно, что дифракция будет наблюдаться лишь при . Т. е. при условии будут отсутствовать дифракционные максимумы. Поэтому условие называют условием оптической однородности кристалла.

Из (9.5.1) следует, что наблюдение дифракционных максимумов возможно только при определенных соотношениях между λ и θ. Этот результат лежит в основе спектрального анализа рентгеновского излучения, так как длину волны определяют по известным d, m и измеренному на опыте углу


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: