Дифракция рентгеновских лучей. Условие Вульфа – Брэггов

 

 

Дифракция рентгеновских лучей. Условия Вульфа-Брэггов.

Пространственной, или трехмерной, дифракционной решеткой называется такая оптически неоднородная среда, неоднородности которой периодически повторятся при изменении всех трех пространственных координат.

Пример пространственной дифракционной -

кристаллическая решетка твердого тела. d1,d2,d3-периоды решетки по трем осям координ. которые проведены вдоль трех ребер решетки. Условия Лауэ- для дифракционных max. d1(cos - cos ) = n1

d2(cos - cos 0)= n2 (1)

d3(cos - cos 0)= n3

, 0, 0, и , , -углы м/ж осями координат и направлениями распростр.соответ-но падающего и дифрагировавшего луча света;n1,n2,n3-целые числа, определ-го порядок max. Из 3-х углов , , (соотв. , 0, 0) независимыми.явл. 2-а угла т. к. они должны удовлетворять одному геомитр. соотношению, конкретный вид которого зависит от углов м/ж осями координат

При произвольно заданном направлении падения монохроматического света на пространственную дифрак. решетку - нельзя найти знач. , , , которые удовлетворяли бы геометрическому соотношению, и 3-м условиям Лауэ. Исключение: max нулевого порядка. Для наблюдения дифракционного max порядка (n1,n2,n3) при заданных значениях углов , 0, 0 необходимо, чтобы длинна волны падающего света имела определенные значения. Из (1) , что (условие оптической однородности среды) dмакс - наибольшее из значений d1,d2,d3- должны отсутствовать все дифракционные max, кроме нулевого (n1=n2=n3=0).

Вульф и Брэгг - предложили простой метод дифракции рентгеновского излучения в кристаллах. Они исходили из предположения, что дифракцию рентгеновского излучения можно рассматривать как результат отражения от системы параллельных сетчатых плоскостей кристалла. АА1 и ВВ1 - сетчатые плоскости кристалла. Абсолютный показатель преломления всех сред для рентгеновского излучения близок к единице. Оптическая разность хода =

2d sin = n -Условие Брэгга - Вульфа. -угол м/ж падающими и отраженным лучами. n=1..2…- порядок дифракционного max.

17. Физические принципы получения и восстановления голограммы.

Голография – это безлинзовое получение и последующее восстановление оптического изображения путём востановления волнового фронта. Экспериментальное воплощение и дальнейшая разработка этого способа стали возможным после появления в 1960 г.источников света высокой степени когерентности - лазеров.

Для регистрации предметной волны (волны, идущей от предмета), используют ещё когерентную с ней волну, идущую от источника света (опорная волна). Идея голографирования состоит в том, что фотографируется распределение интенсивности в интерференционной картине, возникающей при суперпозиции волнового поля объекта и когерентной ему опорной волны известной фазы. Последующая дифракция света на зарегистрированном распределении почернений в фотослое восстанавливает волновое поле объекта и допускает изучение этого поля при отсутствии объекта.

Схема получения голограммы.(рис.а)

Лазерный пучок делится на две части, причём одна его часть отражается зеркалом на фотопластинку (опорная волна), а вторая попадает на фотопластинку, отразившись от предмета (предметная волна). Опорная и предметная волнынакладываясь друг на друга, образуют на фотопластинке интерференционную картину. После проявления фотопластинки и получается голограмма - зарегистрированная на фотопластинке интерференционная картина, образованная при сложении опорной и предметной волн.

Для восстановления изображения (рис.б.) голограмма помещается в то же самое положение, где она находилась до регистрации. Её освещают опорным пучком того же лазера (вторая часть лазера прикрывается диафрагмой). В результате дифракции света на интерференционной структуре голограммы восстанавливается копия предметной волны, образующая объёмное мнимое изображение предмета, расположенное в том месте, где предмет находился при голографировании. Кроме того, восстанавливается ещё и действительное изображение, имеющее рельеф, обратный рельефу предмета, т.е. выпуклые места заменены вогнутыми, и наоборот (если наблюдение ведётся с права от голограммы).

Основные применения голографии.

Для измерения деформации или перемещения тел.

Для выявления структуры газовых потоков в аэродинамике.

Для устранения искажений в оптических системах.

Для изготовления дифракционных решёток.

Для получения оптических изображений.

Для опознавания образов в вычислительной технике.

Для хранения информации.

В радиолокации.

 

Если поставить две дифракционные решетки одна за другой так, чтобы их щели были перпендикулярны, то первая решетка дает ряд максимумов, положение которых определяется условием

Вторая решетка разобьет каждый из образовавшихся пучков на расположенные максимумы, перпендикулярные максимумам от первой решетки и удовлетворяющие условию:

 
 


Даваемая таким образом картина будет представлять вид правильно расположенных пятен, каждое из которых будет удовлетворять указанным условиям и и каждому будет соответствовать пара чисел m1, m2. (Та же картина получится, если разделить пластинку на систему взаимно перпендикулярных штрихов.Такая пластина называется двумерной периодической структурой).

Дифракция наблюдается и на трехмерных структурах, обнаруживающим периодичность по трем пространственным направлениям. К таким структурам относятся кристаллические тела. Однако для видимого света (), так как период кристаллической решетки 10-10м. Условие будет выполняться для рентгеновских лучей. В 1913 году Лауэ, Фридрих обнаружили дифракцию на рентгеновских лучах. Русский ученый Вульф и английский Брегги независимо друг от друга предложили простой метод расчета дифракционной картины от кристаллической решетки. Этот метод основан на интерференции отраженных от атомных слоев плоских вторичных волн, которые будут усиливать друг друга в определенных направлениях, определяемых условием

, - формула Вульфа-Бреггов

- угол скольжения

d – период идентичности кристалла в направлении, перпендикулярном слоям.

Получается на фотопластине картина в виде точек, взаимное расположение которых отражает симметрию кристалла. По расстоянию между пятнышками и интенсивности определяют расположение атомов.

По дифракционной картине от различно направленных в кристалле атомным слоям можно выяснить кристаллическую структуру. Атомные слои, густо населенные атомами, дают более интенсивные максимумы.

Дифракция рентгеновских лучей на кристаллах используется:

1. Для определения спектрального состава рентгеновских лучей на кристаллах с известной кристаллической структурой (рентгеновская спектроскопия)

2. Для рентгеноструктурного анализа (определения структуры кристаллов)

Понятие о голографии

Голография – переводится «полна запись» - это система методов записи и воспроизведения структуры световой волны, отраженной предметом на фотопластинке. При освещении голограммы пучком света зафиксированная на ней волна восстанавливается почти в первоначальном виде (зрительное впечатление такое же, как и от реального предмета).

Идея голографии принадлежит Габоргу (1947 г). Первая голограмма была получена в 1963 году американцами Лейтом и Упатнисксом. Денисюк предложил метод, позволяющий на толстослойной эмульсии зафиксировать цветную голограмму.

Основное требование при голографии – высокая когерентность световых лучей, которая достигается при использовании лазерных лучей. На тонкослойной эмульсии получение голограмм заключается в разделении расширенного лазерного пучка с помощью линз на две части: одна часть, отразившись от зеркала 3 образует опорный пучок 1, падающий на фотопластинку, другая часть образует предметный пучок 2, отразившись от предмета. Их интерференционная картина фиксируется фотопластиной. После восстановления голограмма освещается опорным пучком 1, который дифрагирует на голограмме, создавая световую волну, с такой же структурой, как и отраженный от предмета, и создает мнимое изображение. (Оно является объемным, нужно по разному аккумулировать глаз). Действительное изображение псевдоскопично.

 
 


Применение: голографическое кино, телевидение, микроскоп, контроль качества обработки изделий.

5. Дисперсия света

Явление зависимости показателя преломления вещества от длины волны называют дисперсией света

- длина световой волны в вакууме.

Дисперсией вещества называют производную n по : D = .

Для всех прозрачных сред для видимого света с увеличением длины волны показатель преломления n уменьшается, откуда следует

(5.0)

Это нормальная дисперсия.

Если >0, то дисперсия является аномальной. Среды, в которых скорость световой волны зависит от , называются диспергирующими.

 

 

Формула Вульфа — Брэггов 2dsinq=ml (m=1, 2, 3,...),

38.дифракционная решетка как спектральный аппарат.критерии Рэлея

Дифракционная решетка является важнейшим спектральным прибором, предназначенным для разложения света в спектр и измерения длин волн. Из формулы (3.9.4), определяющей направления на главные фраунгоферовы максимумы, видно, что эти направления зависят от длины световой волны l (за исключением максимума нулевого порядка, m = 0). Поэтому решетка в каждом порядке m ¹ 0 разложит падающий на нее свет в спектр различных порядков. Причем наибольшее отклонение в каждом порядке испытывает красная часть спектра (более длинноволновая).

Основными характеристиками любого спектрального прибора являются угловая дисперсия, разрешающая способность и область дисперсии.

1. Угловая дисперсия D характеризует степень пространственного (углового) разделения волн с различными длинами l. По определению,

(3.9.10)

где - разность длин волн, дающих максимум данного порядка, - разность углов под которыми эти максимумы наблюдаются.

Дифференцируя формулу (3.9.4) при данном m находим для решетки , откуда

(3.9.11)

Видно, что для заданного порядка m спектра угловая дисперсия тем больше, чем меньше период d решетки. Кроме того, растет с увеличением угла дифракции .

2. Разрешающая способность R. По определению,

(3.9.12)

где — наименьшая разность длин волн спектральных линий, при которой эти линии воспринимаются еще раздельно, т. е. разрешаются. Величина R не может быть по ряду причин определена точно, а лишь ориентировочно (условно). Такой условный критерий был предложен Рэлеем.

Согласно критерию Рэлея, спектральные линии с разными длинами волн, но одинаковой интенсивности, Рис.3.9.8.

считаются разрешенными, если главный максимум одной спектральной линии совпадает с первым минимумом другой (рис.3.9.8). В этом случае между двумя максимумами возникает провал, составляющий около 20% от интенсивности в максимумах, и линии еще воспринимаются раздельно.

Итак, согласно критерию Рэлея и формуле (3.9.9), необходимо, чтобы максимум m -го порядка (m’ = mN) линии с длиной волны l + dl (рис.3.9.8) совпадал по направлению с первым минимумом линии l (m’ = mN + 1), т. е.

Отсюда следует, что

(3.9.13)

Это и есть искомая формула для разрешающей способности дифракционной решетки. Данная формула дает верхний предел разрешающей способности. Она справедлива при выполнении следующих условий:

1. Интенсивность обоих максимумов должна быть одинаковой.

2. Расширение линий должно быть обусловлено только дифракцией.

3. Необходимо, чтобы падающий на решетку свет имел ширину когерентности, превышающую размер решетки. Только в этом случае все N штрихов решетки будут “работать” согласованно (когерентно), и мы достигнем желаемого результата.

Для повышения разрешающей способности спектральных приборов можно, как показывает формула (3.9.13), либо увеличивать число N когерентных пучков, либо повышать порядок интерференции m. Первое используется в дифракционных решетках (число N доходит до 200 000), второе — в интерференционных спектральных приборах (например, в интерферометре Фабри—Перо число N интерферирующих волн невелико, порядка нескольких десятков, а порядки интерференции m ~ 106 и более).

3. Область дисперсии D l — это ширина спектрального интервала, при которой еще нет перекрытия спектров соседних порядков. Если спектры соседних порядков перекрываются, то спектральный аппарат становится непригодным для исследования соответствующего участка спектра.

Длинноволновый конец спектра m -го порядка совпадает с коротковолновым концом спектра (m + 1)-го порядка, если m (l + D l) = (m + 1) l, откуда следует, что область дисперсии

(3.9.14)

Значит, область дисперсии D l обратно пропорциональна порядку спектра т. При работе со спектрами низких порядков (обычно второго или третьего) дифракционная решетка пригодна для исследования излучения, занимающего достаточно широкий спектральный интервал.

Дифракция на двумерных и трехмерных решетках.

Двумерной решеткой называется структура, свойства которой периодически меняются в двух направлениях. Примером могут служить две скрещенные одномерные решетки, т.е. наложенные одна на другую под некоторым углом. Дифракционная картина от такой структуры может быть получена путем наложения дифракционных картин от соответствующих одномерных решеток.

Трехмерные, пространственные решетки обладают периодичностью в трех различных направлениях. Они играют важную роль в физике рентгеновских лучей. Дифракцию рентгеновских лучей на оптических дифракционных решетках получить нельзя, так как длина волны рентгеновского излучения имеет порядок 0,1нм, т.е. значительно меньше ширины щели оптической решетки. Дифракцию рентгеновских лучей можно наблюдать, если использовать кристаллическую структуру, как естественную периодическую пространственную решетку. В этом случае картина получается весьма сложной. Однако, ее можно использовать как для изучения спектрального состава излучения (если известны параметры кристалла), так и для определения характеристик кристалла (если известна длина волны излучения.

Голография.

Голография (от греческого холос – полный, графо – пишу) – способ получения объемных изображений предметов на фотопластинке при помощи когерентного излучения.

При освещении предмета от него распространяется рассеянная волна. Эта волна несет полную информацию о форме и других свойствах предмета. Попадая в глаз или объектив фотоаппарата, она образует на сетчатке или фотопластинке изображение. По степени почернения фотопластинки можно судить об амплитуде рассеянной волны. Таким образом, пластинка в этом случае сохраняет информацию только об амплитуде волны. Мы получаем плоское изображение. Для восстановления волнового поля в полном объеме (объемного изображения) этой информации недостаточно. Нужна еще информация о фазе, которую пластинка не содержит.

В 1947году английский физик и инженер Д.Габор показал, что необходимую информацию о фазе можно получить и записать на той же фотопластинке, если осветить ее вторым пучком от того же когерентного источника и заставить его интерферировать с пучком, рассеянным предметом.

Голограмма фиксирует не само изображение предмета, а структуру отраженной от него световой волны (амплитуду и фазу). Для получения голограммы необходимо, чтобы на фотопластинку одновременно попали два когерентных световых пучка: предметный, отраженный от снимаемого объекта, и опорный – приходящий непосредственно от источника. Свет обоих пучков интерферирует, создавая на пластинке чередование темных и светлых интерференционных полос. Рис.3.9.9.

Принципиальная схема устройства для записи голограммы приведена на рис.3.9.9. В этой схеме луч лазера делится специальным устройством на два. После этого лучи с помощью линз расширяются и с помощью зеркал направляются на объект и фотопластинку. Свет обоих пучков интерферирует, создавая на пластинке чередование темных и светлых полос. На экспонированной таким образом и проявленной пластинке отсутствует какое-либо изображение. Однако его в зашифрованном виде содержит система интерференционных полос. Если голограмму просветить, как диапозитив, лазерным светом той же частоты, что была использована при записи, возникнет «восстановленная голограмма» - объемное изображение предмета, словно висящее в пространстве. Меняя точку наблюдения, можно заглянуть за предметы на первом плане и увидеть детали, ранее скрытые от взгляда. Свет, проходя сквозь систему полос голограммы, дифрагирует и воспроизводит волновой фронт, исходивший от снятого предмета. Аналогичным образом лазерный луч, пропущенный через маленькое отверстие, дает на фотопластинке, поставленной за отверстием систему колец (дифракция Френеля). А световой пучок, проходящий сквозь такую пластинку, сойдется в точку. Таким образом, система колец, полученная при дифракции Френеля представляет собой простейшую голограмму – голограмму точки.

Рэлей как раз и показал, что если центральное световое пятно дифракционной картины одного источника света удалено от центрального светового пятна другого источника света на расстояние не менее радиуса первой темной дифракционной полосы, то мы начинаем воспринимать два источника света раздельно: это расстояние называется линейным разрешением оптического прибора. Если два источника света удалены друг от друга на расстояние d, расстояние от них до нас равно D, длина световой волны равна λ, а диаметр окуляра равен А, то, согласно критерию Рэлея, условием оптического разрешения двух источников в окуляре будет: d/D > 1,22 λ/A

Для наблюдения дифракционной картины необходимо, чтобы постоянная решетки была того же порядка, что и длина волны падающего излучения

М. Лауэ (1879—1960) прийти к выводу, что в качестве естественных дифракционных решеток для рентгеновского излучения можно использовать кристаллы, поскольку расстояние между атомами в кристаллах одного порядка с l рентгеновского излучения (»10–12¸10–8 м).

Простой метод расчета дифракции рентгеновского излучения от кристаллической решетки предложен независимо друг от друга Г. В. Вульфом (1863—1925) и английс­кими физиками Г. и Л. Брэггами Они пред­положили, что дифракция рентгеновского излучения является результатом его отраже­ния от системы параллельных кристаллографических плоскостей Максимумы интенсивности (дифракционные мак­симумы) наблюдаются в тех направлениях, в которых все отраженные атомными плоскостями волны будут находиться в одинаковой фазе. Эти направления удовлет­воряют формуле Вульфа — Брэггов

 

Наблюдая дифракцию рентгеновских лучей известной длины волны на кристал­лической структуре неизвестного строения и измеряя q и т, можно найти межплоскост­ное расстояние (d), т.е. определить структуру вещества. Этот метод лежит в основе рентгеноструктурного анализа. Формула Вульфа — Брэггов остается справедливой и при дифракции электронов и нейтронов. Методы исследования структуры вещества, основанные на дифракции электронов и нейтронов, называются соответственно электронографией и нейтронографией.

2. Наблюдая дифракцию рентгеновских лучей неизвестной длины волны на кри­сталлической структуре при известном d и измеряя q и т, можно найти длину волны падающего рентгеновского излучения. Этот метод лежит в основе рентгеновской спек­троскопии.

Дисперсия света. Основные понятия, примеры дисперсии в природе. Разложение света в спектр в призме. Различия в дифракционном и призматическом спектрах

Дисперсией света называется зависимость показателя преломления n вещества от частоты n (длины волны l) света или зависимость фазовой скорости v световых волн (см. § 154) от его частоты n. Дисперсия света представляется в виде зависимости

(185.1)

Следствием дисперсии является разложение в спектр пучка белого света при прохождении его через призму.

Рассмотрим дисперсию света в призме. Пусть монохроматический пучок света падает на призму с преломляющим углом А и показателем преломления п (рис. 268) под углом a1. После двукратного преломления (на левой и правой гранях призмы) луч оказывается отклоненным от первоначального направления на угол j. Из рисунка следует, что

(185.2)

Предположим, что углы А иa1 малы, тогда углы a2, b 1 и b 2 будут также малы и вместо синусов этих углов можно воспользоватьсяих значениями. Поэтому a1/ b 1= n, b 2/a2=1/ n, атаккак b 1 +b 2= А, то a2 =b 2 n=n(A–b 1 )=n (A– a1 /n)=nA– a1, откуда

(185.3)

Из выражений (185.3) и (185.2) следует, что

(185.4)

т. е. угол отклонения лучей призмой тем больше, чем больше преломляющий угол призмы.

 

Из выражения (185.4) вытекает, что угол отклонения лучей призмой зависит от величины n –1, а n — функция длины волны, поэтому лучи разных длин волн после прохождения призмы окажутся отклоненными на разные углы, т. е. пучок белого света за призмой разлагается в спектр, что и наблюдалось И. Ньютоном. Таким образом, с помощью призмы, так же как и с помощью дифракционной решетки, разлагая свет в спектр, можно определить его спектральный состав.

Составные цвета в дифракционном и призматическом спектрах располагаются различно. Из (180.3) следует, что в дифракционной решетке синус угла отклонения пропорционален длине волны. Следовательно, красные лучи, имеющие большую длину волны, чем фиолетовые, отклоняются дифракционной решеткой сильнее. Призма же разлагает лучи в спектр по значениям показателя преломления, который для всех прозрачных веществ с увеличением длины волны уменьшается (рис. 269). Поэтому красные лучи отклоняются призмой слабее, чем фиолетовые.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: