double arrow

Дифракция электронов

В начале 1927 г. Ч. Дэвиссон и Л. Джермер убедительно подтвердили волновую природу электронов. Пучок электронов ускорялся в электрическом поле, проходя разность потенциалов U. При этом электроны приобретали кинетическую энергию mυ2/2 = eU, т.е. импульс

p = mυ = (2meU)1/2. (7)

Затем пучок электронов направлялся на мишень, состоявшую из сравнительно крупных кристаллов никеля. Подвижный детектор измерял количество электронов, рассеянных под разными углами. Возникшая картина полностью соответствовала картине рассеяния рентгеновских лучей на кристалле

Пользуясь условием Брэгга, Дэвиссон и Джермер определили длину волны электронов λ= h/p и сравнили с вычислениями, основанными на гипотезе де Бройля, получив прекрасное согласие.

В другой постановке опыты по дифракции электронов были проделаны в том же году Дж. П. Томсоном. Электроны рассеивались на поликристаллической фольге. Среди множества маленьких кристалликов всегда находятся такие, которые ориентированы так, что выполняется условие Брэгга.

Дифрагированные лучи от каждого из таких кристалликов, складываясь, дают типичную кольцевую дифракционную картину, аналогичную картине рассеяния рентгеновских лучей.

Рисунок 5 Дифракционная картина рассеяния электронов

Вывод: при определенных условиях электрон и другие микрочастицы проявляют волновые свойства.

Свет обладает как волновыми, так и корпускулярными свойствами. Волновые свойства проявляются при распространении света (интерференция, дифракция). Корпускулярные свойства проявляются при взаимодействии света с веществом (фотоэффект, излучение и поглощение света атомами).

Свойства фотона как частицы (энергия Е и импульс p) связаны с его волновыми свойствами (частотой ν и длиной волны λ) соотношениями

; , (8)

где h=6,63×10-34 Дж - постоянная Планка.

Пытаясь преодолеть трудности боровской модели атома, французский физик Луи де Бройль в 1923 г. выдвинул гипотезу, что сочетание волновых и корпускулярных свойств присуще не только свету, но и любому материальному телу. То есть частицы вещества (например, электроны) обладают волновыми свойствами. Согласно де Бройлю каждому телу массой m, движущемуся со скоростью υ, соответствует волновой процесс с длиной волны

(9)

Наиболее ярко волновые свойства проявляются у микрообъектов (элементарных частиц). Вследствие малой массы длина волны де Бройля оказывается сравнимой с межатомным расстоянием в кристаллах. В этих условиях при взаимодействии пучка частиц с кристаллической решеткой возникают дифракционные явления. Электронам с энергией 150 эВ соответствует длина волны λ»10-10 м. Такого же порядка межатомные расстояния в кристаллах. Если пучок таких электронов направить на кристалл, то они будут рассеиваться по законам дифракции. Зафиксированная на фотопленке дифракционная картина (электронограмма) содержит информацию о строении трехмерной кристаллической решетки.

Рисунок 6 Иллюстрация волновых свойств вещества

Для иллюстрации волновых свойств частиц часто используют мысленный эксперимент - прохождение пучка электронов (или других частиц) через щель шириной Δх. С точки зрения волновой теории после дифракции на щели пучок будет уширяться с угловой расходимостью θ»λ/Δх. С корпускулярной точки зрения уширение пучка после прохождения щели объясняется появлением у частиц некоторого поперечного импульса. Разброс значений этого поперечного импульса ("неопределенность") есть

(10)

Соотношение (11)

носит название соотношения неопределенностей. Это соотношение на корпускулярном языке отражает наличие волновых свойств у частиц.

Эксперимент по прохождению пучка электронов через две близко расположенные щели может служить еще более яркой иллюстрацией волновых свойств частиц. Этот эксперимент является аналогом оптического интерференционного опыта Юнга.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



Сейчас читают про: